
Network Working Group M. Banan
Request for Comments: 2524 Neda Communications, Inc.
Category: Informational

February 1999

Neda’s
Efficient Mail Submission and Delivery (EMSD)

Protocol Specification Version 1.3

This Is A Copy

The Postscript, PDF and HTML formats of RFC-2524 are not the authoritative RFC. The formal, authoritative
publication of RFC-2524 is the text format published at the online RFC library.

The author has made every effort to ensure that the Postscript, PDF and HTML formats contain the exact
same text as the original. If there are any discrepancies between the Postscript, PDF, HTML formats and the
original text version, the original text version is always authoritative.

STATUS OF THIS MEMO

This memo provides information for the Internet community. It does not specify an Internet standard of any
kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1999). All Rights Reserved.

IESG Note

The protocol specified in this document may be satisfactory for
limited use in private wireless IP networks. However, it is
unsuitable for general-purpose message transfer or for transfer of
messages over the public Internet, because of limitations that
include the following:

RFC 2524 EMSDP February 1999

- Lack of congestion control

EMSD is layered on ESRO [RFC 2188], which does not provide
congestion control. This makes EMSD completely unsuitable for
end-to-end use across the public Internet. EMSD should be
considered for use in a wireless network only if all EMSD email
exchanged between the wireless network and the public Internet
will transit an EMSD<->SMTP gateway between the two regions.

- Inadequate security

The document specifies only clear-text passwords for
authentication. EMSD should be used across a wireless network
only if sufficiently strong encryption is in use to protect the
clear-text password.

- Lack of character set internationalization

EMSD has no provision for representation of characters outside of
the ASCII repertoire or for language tags.

- Poorly defined gatewaying to and from Internet Mail

Because Internet Mail and EMSD have somewhat different and
conflicting service models and different data models, mapping
between them may provide good service only in limited cases, and
this may cause operational problems.

The IESG therefore recommends that EMSD deployment be limited to
narrow circumstances, i.e., only to communicate with devices that
have inherent limitations on the length and format of a message (no
more than a few hundred bytes of ASCII text), using either:

a. wireless links with adequate link-layer encryption and gatewayed
to the public Internet, or

b. a private IP network that is either very over-provisioned or has
some means of congestion control.

In the near future, the IESG may charter a working group to define an
Internet standards-track protocol for efficient transmission of
electronic mail messages, which will be highly compatible with
existing Internet mail protocols, and which wil be suitable for
operation over the global Internet, including both wireless and wired
links.

Banan Informational [Page 2]

RFC 2524 EMSDP February 1999

ABSTRACT

This document specifies the protocol and format encodings for Efficient Mail Submission and Delivery
(EMSD). EMSD is a messaging protocol that is highly optimized for submission and delivery of short Internet
mail messages. EMSD is designed to be a companion to existing Internet mail protocols.

This specification narrowly focuses on submission and delivery of short mail messages with a clear emphasis
on efficiency. EMSD is designed specifically with wireless network (e.g., CDPD, Wireless-IP, Mobile-IP)
usage in mind. EMSD is designed to be a natural enhancement to the mainstream of Internet mail protocols
when efficiency in mail submission and mail delivery are important. As such, EMSD is anticipated to become
an initial basis for convergence of Internet Mail and IP-based Two-Way Paging.

The reliability requirement for message submission and message delivery in EMSD are the same as existing
email protocols. EMSD protocol accomplishes reliable connectionless mail submission and delivery services
on top of Efficient Short Remote Operations (ESRO) protocols as specified in RFC-2188 [1].

Most existing Internet mail protocols are not efficient. Most existing Internet mail protocols are designed
with simplicity and continuity with SMTP traditions as two primary requirements. EMSD is designed with
efficiency as a primary requirement.

The early use of EMSD in the wireless environment is manifested as IP-based Two-Way Paging services. The
efficiency of this protocol also presents significant benefits for large centrally operated Internet mail service
providers.

Banan Informational [Page 3]

RFC 2524 EMSDP February 1999

Contents
1 PRELIMINARIES 6

1.1 Internet Mail Submission and Delivery . 6
1.2 Relationship Of EMSD To Other Mail Protocols . 6
1.3 EMSD Requirements and Goals . 7
1.4 Anticipated Uses Of EMSD . 8
1.5 Definitions of Terms Used in this Specification . 9
1.6 Conventions Used In This Specification . 9
1.7 About This Specification . 10

2 EFFICIENT MAIL SUBMISSION AND DELIVERY OVERVIEW 10

3 EFFICIENT MAIL SUBMISSION AND DELIVERY PROTOCOL 12
3.1 Use Of Lower Layers . 12

3.1.1 Use of ESROS . 12
3.1.2 Use Of UDP . 13
3.1.3 Encoding Rules . 13
3.1.4 Presentation Context . 13

3.2 EMSD-UA Invoked Operations . 13
3.2.1 submit . 14
3.2.2 deliveryControl . 16
3.2.3 deliveryVerify . 20

3.3 EMSD-SA Invoked Operations . 22
3.3.1 deliver . 22
3.3.2 submissionControl . 24
3.3.3 submissionVerify . 27

3.4 EMSD Common Information Objects . 28
3.4.1 SecurityElements . 28
3.4.2 Message Segmentation and Reassembly . 29
3.4.3 Common Errors . 31
3.4.4 ContentType . 33
3.4.5 EMSDMessageId . 33
3.4.6 EMSDORAddress . 34
3.4.7 EMSDAddress . 34
3.4.8 DateTime . 34
3.4.9 AsciiPrintableString . 35
3.4.10 ProtocolVersionNumber . 35

3.5 Submission and Delivery Procedures . 35

4 DUPLICATE OPERATION DETECTION SUPPORT 37
4.1 Duplicate Operation Detection Support Overview . 37

4.1.1 Operation Value . 38
4.1.2 Operation Instance Identifier . 38

5 EMSD PROCEDURE FOR OPERATIONS 39
5.1 MTS Behavior . 39

5.1.1 MTS Performer . 40
5.1.2 Message-submission . 40
5.1.3 Delivery-control . 42
5.1.4 Delivery-verify . 42
5.1.5 MTS Invoker . 42

Banan Informational [Page 4]

RFC 2524 EMSDP February 1999

5.2 UA Behavior . 44
5.2.1 UA Performer . 44
5.2.2 UA Invoker . 46

6 EMSD FORMAT STANDARDS 47
6.1 Format Standard Overview . 47
6.2 Interpersonal Messages . 48

6.2.1 Heading fields . 48
6.2.2 Body part types . 54

7 ACKNOWLEDGMENTS 55

8 SECURITY CONSIDERATIONS 55

9 AUTHOR’S ADDRESS 55

A EMSD-P ASN.1 MODULE 55

B EMSD-IPM ASN.1 MODULE 66

C RATIONALE FOR KEY DESIGN DECISIONS 70
C.1 Deviation From The SMTP Model . 70

C.1.1 Comparison of SMTP and EMSD Efficiency . 70
C.2 Use of ESRO Instead of TCP . 71
C.3 Use Of Remote Procedure Call (RPC) Model . 71
C.4 Use Of ASN.1 . 71

D FURTHER DEVELOPMENT 72

Banan Informational [Page 5]

RFC 2524 EMSDP February 1999

1 PRELIMINARIES

Mail in the Internet was not a well-planned enterprise, but instead arose in more of an ”organic” way.

This introductory section is not intended to be a reference model and concept vocabulary for mail in the
Internet. Instead, it only provides the necessary preliminaries for the concepts and terms that are essential to
this specification.

1.1 Internet Mail Submission and Delivery

For the purposes of this specification, mail submission is the process of putting mail into the mail transfer
system (MTS).

For the purposes of this specification, mail delivery is the process of the MTS putting mail into a user’s final
mail-box.

Throughout the Internet, presently most of mail submission and delivery is done through SMTP.

SMTP was defined as a message *transfer* protocol, that is, a means to route (if needed) and deliver mail by
putting finished (complete) messages in a mail-box. Originally, users connected to servers from terminals,
and all processing occurred on the server. Now, a split-MUA (Mail User Agent) model is common, with
MUA functionality occurring on both the user’s own system and the server.

In the split-MUA model, getting the messages to the user is accomplished through access to a mail-box on
the server through such protocols as POP and IMAP. In the split-MUA model, user’s access to its message is
a ”Message Pull” paradigm where the user is required to poll his mailbox. Proper message delivery based on
a ”Message Push” paradigm is presently not supported. The EMSD protocol addresses this shortcoming with
an emphasis on efficiency.

In the split-MUA model, message submission is often accomplished through SMTP. SMTP is widely used
as a message *submission* protocol. Widespread use of SMTP for submission is a reality, regardless of
whether this is good or bad. EMSD protocol provides an alternative mechanism for message submission
which emphasizes efficiency.

1.2 Relationship Of EMSD To Other Mail Protocols

Various Internet mail protocols facilitate accomplishment of various functions in mail processing.

Figure 1, categorizes the capabilities of SMTP, IMAP, POP and EMSD based on the following functions:

• Mail Submission

• Mail Delivery

• Mail Routing (Relay)

• Mail Retrieval

Banan Informational [Page 6]

RFC 2524 EMSDP February 1999

+------------------+------+-------+-----+------+
| Protocols| SMTP | IMAP | POP | EMSD |
Functions				
Submission	XX			XXX
------------------	------	-------	-----	------
Delivery	XXX			XXX
------------------	------	-------	-----	------
Relay (Routing)	XXX			
------------------	------	-------	-----	------
Retrieval		XXX	XXX	XX
------------------	------	-------	-----	------
Mailbox Access		XXX	X	
------------------	------	-------	-----	------
Mailbox Synch.		XXX		
+------------------+------+-------+-----+------+

Figure 1: Messaging Protocols vs. Supported Functions

• Mail-box Access

• Mail-box Synchronization

In Figure 1, the number of ”X”es in each box denotes the extent to which a particular function is supported
by a particular protocol.

Figure 1 clearly shows that combinations of these protocols can be used to complement each other in provid-
ing rich functionality to the user. For example, a user interested in highly mobile messaging functionalities
can use EMSD for ”submission and delivery of time critical and important messages” and use IMAP for
comprehensive access to his/her mail-box.

For mail submission and delivery of short messages EMSD is up to 5 times more efficient than SMTP both
in terms of the number of packets transmitted and in terms of number of bytes transmitted. Even with
PIPELINING and other possible optimizations of SMTP, EMSD is up to 3 times more efficient than SMTP
both in terms of the number of packets transmitted and in terms of number of bytes transmitted. Various
efficiency studies comparing EMSD with SMTP, POP and IMAP are available. See Section C.1.1 for more
information about comparison of SMTP and EMSD’s efficiency.

1.3 EMSD Requirements and Goals

The requirements and goals driving design of EMSD protocol are enumerated below.

1. Provide for submission of short mail messages with the same level of functionality (or higher) that the
existing Internet mail protocols provide.

2. Provide for delivery of short mail messages with the same level of functionality (or higher) that the
existing Internet mail protocols provide.

Banan Informational [Page 7]

RFC 2524 EMSDP February 1999

3. Function as an extension of the existing mainstream Internet mail.

4. Minimize the number of transmissions.

5. Minimize the number of bytes transmitted.

6. Be quick: minimize latency of message submission and delivery.

7. Provide the same level of reliability (or higher) that the existing email protocols provide.

8. Accommodate varying sizes of messages: the size of a message may determine how the system deals
with the message, but the system must accommodate it.

9. Be power efficient and respect mobile platform resources: including memory and CPU levels, as well
as battery power longevity (i.e. client-light and server-heavy).

10. Highly extendible: different users will demand different options, so the solution cannot require every
feature to be a part of every message. Likewise, usage will emerge that is not currently recognized as
a requirement. The solution must be extendible enough to handle new, emerging requirements.

11. Secure: provide the same level of security (or higher) that the existing email protocols provide. Content
confidentiality, originator/recipient authentication and message integrity must be available options to
users.

12. Easy to implement: Re-use existing technology as much as possible.

1.4 Anticipated Uses Of EMSD

Any network and network operator which has significant bandwidth and capacity limitations can benefit from
the use of EMSD. Any network user who must bear high costs for measured network usage can benefit from
the use of EMSD.

Initial uses of EMSD is anticipated to be primarily over IP-based wireless networks to provide two-way
paging services.

EMSD can also function as an adjunct to Mail Access Protocols for ”Mail Notification Services”.

Considering:

• that most wireless networks shall converge toward being IP-based;

• that two-way paging is the main proven application in most wide-area wireless networks;

• that two-way paging industry and the Internet Email industry can and should converge based on a set
of open protocols that address the efficiency requirements adequately;

• that existing Internet email protocols are not bandwidth efficient;

• that existing Internet email protocols do not properly support the ”push” model of delivery of urgent
messages,

Banan Informational [Page 8]

RFC 2524 EMSDP February 1999

the EMSD protocol is designed to facilitate the convergence of IP-based two-way paging and Internet email.

Mail submission and delivery take place at the edges of the network. More than one mail submission and
delivery protocols which address requirements specific to a particular user’s environment are likely to be
developed. Such diversity on the edges of the network is desirable and with the right protocols, this diversity
does not adversely impact the integrity of the mail transfer system. EMSD is the initial basis for the mail
submission and delivery protocol to be used when the user’s environment demands efficiency.

1.5 Definitions of Terms Used in this Specification

The following informal definitions and acronyms are intended to help describe EMSD model described in
this specification.

Efficient Mail Submission and Delivery Protocol (EMSD-P): The protocol used to transfer messages be-
tween the EMSD - Server Agent (e.g., a Message Center) and the EMSD - User Agent (e.g., a Two-Way
Pager), see Figure 2.

Message Transfer Agent (MTA)

Message Transfer Service (MTS)

Message Routing Service (MRS): Collection of MTAs responsible for mail routing.

Message User Agent (MUA)

Efficient Mail Submission Server Agent (EMS-SA): An Application Process which conforms to this pro-
tocol specification and accepts mail from an EMS-UA and transfers it towards its recipients.

Efficient Mail Delivery Server Agent (EMD-SA): An Application Process which conforms to this proto-
col specification and delivers mail to an EMD-UA.

Efficient Mail Submission and Delivery Server Agent (EMSD-SA): An Application Process which incor-
porates both EMS-SA and EMD-SA capabilities.

Efficient Mail Submission User Agent (EMS-UA): An Application Process which conforms to this proto-
col specification and submits mail to EMS-SA.

Efficient Mail Delivery User Agent (EMD-UA): An Application Process which conforms to this protocol
specification and accepts delivery of mail from EMD-SA.

Efficient Mail Submission and Delivery User Agent (EMSD-UA): An Application Process which incor-
porates both EMS-UA and EMD-UA capabilities.

1.6 Conventions Used In This Specification

The key words ”MUST”, ”MUST NOT”, ”SHOULD”, ”SHOULD NOT”, and ”MAY” in this specification
are to be interpreted as defined in [2].

This specification uses the ES-OPERATION notation defined in Efficient Short Remote Operations (ESRO)
protocols as specified in RFC-2188 [1].

Banan Informational [Page 9]

RFC 2524 EMSDP February 1999

Operations and information objects are typically described using the ES-OPERATION and ASN.1 notations
in the relevant sections of the specification.

The complete machine verifiable ASN.1 modules are also compiled in one place in Appendix A and Appendix
B.

1.7 About This Specification

This protocol specification constitutes a point-of-record. It documents information exchanges and behaviors
of existing implementations. It is a basis for implementation of efficient mail submission and delivery user
agents and servers.

This specification has been developed entirely outside of IETF. It has had the benefit of review by many
outside of IETF. Much has been learned from existing implementations of this protocol. A number of defi-
ciencies and areas of improvement have been identified and are documented in this specification.

This protocol specification is being submitted on October 23, 1998 for timely publication as an Informational
RFC.

Future development and enhancements to this protocol may take place inside of IETF.

2 EFFICIENT MAIL SUBMISSION AND DELIVERY OVERVIEW

This section offers a high level view of the Efficient Mail Submission and Delivery Protocol and Format
Standards (EMSD-P&FS).

The EMSD-P&FS are used to transfer messages between the EMSD - Server Agent (e.g., a Message Center)
and the EMSD - User Agent (e.g., a Two-Way Pager), see Figure 2.

This specification defines the protocols between an EMSD - User Agent (EMSD-UA) and an EMSD - Server
Agent (EMSD-SA). The EMSD - P&FS consist of two independent components:

1. EMSD Format Standard (EMSD-FS).

EMSD-FS is a non-textual form of compact encoding of Internet mail (RFC-822) messages which
facilitates efficient transfer of messages. EMSD-FS is used in conjunction with the EMSD-P but is not a
general replacement for RFC-822. EMSD-FS defines a method of representation of short interpersonal
messages. It defines the ”Content” encoding (Header + Body). Although EMSD-FS contains end-to-
end information its scope is purely point-to-point. EMSD-FS relies on EMSD-P (see 2 below) for the
transfer of the content to its recipients.

This is described in the section entitled EMSD Format Standards.

2. Efficient Mail Submission and Delivery Protocol (EMSD-P).

EMSD-P is responsible for wrapping an EMSD-FS message (see 1 above) in a point-to-point envelope
and submitting or delivering it. EMSD-P relies on the services of Efficient Short Remote Operation
Services (ESROS) as specified in RFC-2188 [1] for transporting the point-to-point envelope. Some of

Banan Informational [Page 10]

RFC 2524 EMSDP February 1999

+---+
| MTS |
| |
| +-------------------------+ |
	MRS						
	+---+ +---+						
				M		+---+	
			<-------->	T	<----------->		
				A			
			+---+		E		
					M		
		M			S		EMSD-P&FS
		T	<-------------------------->	D	<---------------->	D	
		A			-		
			+---+		S		
				M			A
			<-------->	T	<----------->		
				A			
	+---+ +---+	+---+					
+-------------------------+							
+---+

Figure 2: Efficient Mail Submission and Delivery Protocol

the services of EMSD-P include: message originator authentication and optional message segmentation
and reassembly. The EMSD-P is expressed in terms of abstract services using the ESROS notation.
This is described in the section entitled Efficient Mail Submission and Delivery Protocol.

It is important to recognize that EMSD-P and EMSD-FS are not end-to-end, but focus on the point-to-point
transfer of messages. The two points being EMSD-SA and EMSD-UA. EMSD-P function as elements of
the Internet mail environment, which provide end-to-end (EMSD-User to any other Messaging Originator or
Recipient) services.

Figure 2 illustrates how the EMSD-P&FS defines the communication between a specific EMSD-UA and a
specific EMSD-SA. The Message Transfer System may include a number of EMSD-SAs. Each EMSD-SA
may have any number of EMSD-UAs with which it communicates.

The Efficient Mail Submission and Delivery Services use the Efficient Short Remote Operation Services
(ESROS). They also use the Duplicate Operation Detection Support Functions as described in the section
entitled Duplicate Operation Detection Support Functions. These functions guarantee that an operation is
performed no more than once.

Banan Informational [Page 11]

RFC 2524 EMSDP February 1999

3 EFFICIENT MAIL SUBMISSION AND DELIVERY PROTOCOL

EM Submission is the process of transferring a message from EMSD-UA to EMSD-SA. EM Delivery is the
process of transferring a message from EMSD-SA to EMSD-UA.

The Message-submission service enables an EMSD-UA to submit a message to the EMSD-SA for transfer
and delivery to one or more recipients. The Message-submission Service comprises of the submit operation
– invoked by the EMSD-UA – and possibly the submitVerify operation – invoked by the EMSD-SA.

The Message-delivery service enables the EMSD-SA to deliver a message to an EMSD-UA. The Message-
delivery Service comprises of the deliver operation – invoked by the EMSD-SA – and possibly the deliv-
erVerify operation – invoked by the EMSD-UA.

EMSD-UA uses the following services:

• Message-submission

• Delivery-control (the deliveryControl operation).

EMSD-SA uses the following services:

• Message-delivery

• Submission-control (the submissionControl operation).

This specification expresses information objects using ASN.1 [X.208].

This specification expresses Remote Operations based on the model of ESROS as specified in Efficient Short
Remote Operations (RFC-2188) [1]. The ES-OPERATION notation of (RFC-2188) is used throughout this
specification to define specific operations.

This specification uses the Duplicate Operation Detection Support functions as specified in Section 4.

3.1 Use Of Lower Layers

3.1.1 Use of ESROS

ESRO protocol, as specified in (RFC-2188 [1]), provides reliable connectionless remote operation services
on top of UDP [6] with minimum overhead. ESRO protocol supports segmentation and reassembly, concate-
nation and separation.

ESRO Services (2-Way and 3-Way handshake) shall be used by the EMSD-P.

ESRO Service Access Point (SAP) selectors used by EMSD-P are enumerated in the protocol.

Banan Informational [Page 12]

RFC 2524 EMSDP February 1999

3.1.2 Use Of UDP

EMSD-P through ESRO MUST use UDP [6] port number 642 (esro-emsdp).

Note that specification of Service Access Points (SAP) for EMSD-P include the UDP Port Number specifi-
cation in addition to ESRO SAP selector specifications. In other words, EMSD-P’s use of ESRO SAPs does
not preclude use of the same SAP selectors by other protocols which use a UDP port other than port 642.
Such usage of ESRO is a design characteristic of ESRO which results into bandwidth efficiency and is not a
scalability limitation.

3.1.3 Encoding Rules

Use of Basic Encoding Rules (BER) [5] is mandatory for both EMSD Format Standards and EMSD Protocol.

In order to minimize data transfer, the following restrictions shall be maintained in the formatting of EMSD
PDUs:

• Specifically, when ASN.1 Basic Encoding Rules are being used:

A. Only the ”Definite” form of Length encoding MUST be used,
B. The ”Short” form of Length encoding MUST be used whenever possible (i.e. when the Length is

less than 128), and
C. OCTET STRING and BIT STRING values, and any other native ASN.1 types which may be

encoded as either ”Primitive” or ”Constructed”, MUST always be encoded as ”Primitive” and
MUST never be ”Constructed”.

3.1.4 Presentation Context

Parameter Encoding Type of ”0” MUST be used in ESRO Protocol to identify Basic Encoding Rules for
operation arguments.

3.2 EMSD-UA Invoked Operations

The following operations are invoked by EMSD-UA:

a. submit

b. deliveryControl

c. deliveryVerify

The submit operation uses the duplication detection functional unit while deliveryControl and deliveryVerify
don’t use the duplication detection.

The complete definition of these operations follows.

Banan Informational [Page 13]

RFC 2524 EMSDP February 1999

3.2.1 submit

The submit ES-OPERATION enables an EMSD-UA to submit a message to the EMSD-SA for transfer and
delivery to one or more recipients.

submit ES-OPERATION

ARGUMENT SubmitArgument
RESULT SubmitResult
ERRORS
{

submissionControlViolated,
securityError,
resourceError,
protocolViolation,
messageError

} ::= 33;

Duplicate operation detection is necessary for this operation.

The successful completion of the ES-OPERATION signifies that the EMSD-SA has accepted responsibility
for the message (but not that it has delivered it to its intended recipients).

The disruption of the ES-OPERATION by an error signifies that the EMSD-SA cannot assume responsibility
for the message.

Arguments

This operation’s arguments are:

SubmitArgument ::= SEQUENCE
{

-- Security features
security [0] IMPLICIT SecurityElement OPTIONAL,

-- Segmentation features for efficient transport
segment-info SegmentInfo OPTIONAL,

-- Content type of the message
content-type ContentType,

--
-- THE CONTENT --
--

-- The submission content
content ANY DEFINED BY content-type

Banan Informational [Page 14]

RFC 2524 EMSDP February 1999

};

The fields are:

Security

See Section 3.4.1, ”SecurityElements”.

Segment-info

See Section 3.4.2, ”Message Segmentation and Reassembly”.

Content-type

This argument identifies the type of the content of the message. It identifies the abstract syntax and the
encoding rules used.

Content

This argument contains the information the message is intended to convey to the recipient(s). It shall be
generated by the originator of the message.

Results

This operation’s results are:

SubmitResult ::= SEQUENCE

{
-- Permanent identifier for this message.
-- Also contains the message submission time.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDLocalMessageId.

message-id EMSDLocalMessageId
};

The fields are:

Banan Informational [Page 15]

RFC 2524 EMSDP February 1999

Message-id

This result contains an EMSD-SA-identifier that uniquely and unambiguously identifies the message-submission.
It shall be generated by the EMSD-SA.

Errors

See Section 3.4.3.

3.2.2 deliveryControl

The deliveryControl ES-OPERATION enables the EMSD-UA to temporarily limit the operations that the
EMSD-SA may invoke, and the messages that the EMSD-SA may deliver to the EMSD-UA via the Message
delivery ES-OPERATION.

deliveryControl ES-OPERATION
ARGUMENT DeliveryControlArgument
RESULT DeliveryControlResult
ERRORS
{

securityError,
resourceError,
protocolViolation

} ::= 2;

The duplicate operation detection is not required for this operation.

The EMSD-SA shall hold until a later time, rather than abandon, ES-OPERATIONS and messages that are
presently suspended.

The successful completion of the ES-OPERATION signifies that the specified controls are now in force.

The ES-OPERATION returns an indication of any ES-OPERATIONS that the EMSD-SA would invoke, or
any message types that the EMSD-SA would deliver, were it not for the prevailing controls.

Arguments

This operation’s arguments are:

DeliveryControlArgument ::= SEQUENCE
{

-- Request an addition of or removal of a set of restrictions

Banan Informational [Page 16]

RFC 2524 EMSDP February 1999

restrict [0] IMPLICIT Restrict DEFAULT update,

-- Which operations are to be placed in the restriction set
permissible-operations [1] IMPLICIT Operations OPTIONAL,

-- What maximum content length should be allowed
permissible-max-content-length

[2] IMPLICIT INTEGER
(0..ub-content-length) OPTIONAL,

-- What is the lowest priority message which may be delivered
permissible-lowest-priority

[3] IMPLICIT ENUMERATED
{
non-urgent (0),
normal (1),
urgent (2)

} OPTIONAL,

-- Security features
security [4] IMPLICIT SecurityElement

OPTIONAL,

-- User Feature selection
user-features [5] IMPLICIT OCTET STRING

OPTIONAL
};

Restrict

This argument indicates whether the controls on ES-OPERATIONS are to be updated or removed. It may be
generated by the EMSD-UA.

This argument may have one of the following values:

• update: The other arguments update the prevailing controls;

• remove: All temporary controls are to be removed

In the absence of this argument, the default update shall be assumed.

Permissible-operations

This argument indicates the ES-OPERATIONS that the EMSD-SA may invoke on the EMSD-UA. It may be
generated by the EMSD-UA.

Banan Informational [Page 17]

RFC 2524 EMSDP February 1999

This argument may have the value allowed or prohibited for each of the following:

• message-delivery: The EMSD-SA may/may not invoke the deliver ES-OPERATIONS; and

• Other ES-OPERATIONS are not subject to controls, and may be invoked at any time.

In the absence of this argument, the ES-OPERATIONS that the EMSD-SA may invoke on the EMSD-UA are
unchanged.

Permissible-max-content-length

This argument contains the content-length, in octets, of the longest-content message that the EMSD-SA shall
deliver to the EMSD-UA via the deliver ES-OPERATIONS. It may be generated by the EMSD-UA.

In the absence of this argument, the permissible-maximum-content-length of a message that the EMSD-SA
may deliver to the EMSD-UA is unchanged.

Permissible-lowest-priority

This argument contains the priority of the lowest priority message that the EMSD-SA shall deliver to the
EMSD-UA via the deliver ES-OPERATIONS. It may be generated by the EMSD-UA.

This argument may have one of the following values of the priority argument of the submit ES-OPERATIONS:
normal, non-urgent or urgent.

In the absence of this argument, the priority of the lowest priority message that the EMSD-SA shall deliver
to the EMSD-UA is unchanged.

Security

See Section 3.4.1, ”SecurityElements”.

User-features

This argument contains information that allows the EMSD-UA to convey to MTS the feature set that the
user is capable of supporting. This argument will be defined when the setConfiguration and getConfiguration
operations are defined.

Results

DeliveryControlResult ::= SEQUENCE

Banan Informational [Page 18]

RFC 2524 EMSDP February 1999

{
-- Operation types queued at the EMSD-SA due to existing
-- restrictions.
waiting-operations [0] IMPLICIT Operations DEFAULT { },

-- Types of messages queued at the EMSD-SA due to
-- existing restrictions
waiting-messages [1] IMPLICIT WaitingMessages

DEFAULT { },

-- Content Types of messages queued at the EMSD-SA
waiting-content-types SEQUENCE SIZE (0..ub-content-types) OF

ContentType DEFAULT { }

};

Restrict ::= ENUMERATED
{

update (1),
remove (2)

};

Operations ::= BIT STRING
{

submission (0),
delivery (1)

};

WaitingMessages ::= BIT STRING
{

long-content (0),
low-priority (1)

};

Waiting-operations

This result indicates the ES-OPERATIONS being held by the EMSD-SA, and that the EMSD-SA would
invoke on the EMSD-UA if it were not for the prevailing controls. It may be generated by the EMSD-SA.

This result may have the value holding or not-holding for each of the following:

• message-delivery: The EMSD-SA is/is not holding messages, and would invoke the deliver ES-OPERATIONS
on the EMSD-UA if it were not for the prevailing controls.

In the absence of this result, it may be assumed that the EMSD-SA is not holding any messages for delivery
due to the prevailing controls.

Banan Informational [Page 19]

RFC 2524 EMSDP February 1999

Waiting-messages

This result indicates the kind of messages the EMSD-SA is holding for delivery to the EMSD-UA, and would
deliver via the deliver ES-OPERATIONS, if it were not for the prevailing controls. It may be generated by
the EMSD-SA.

This result may have one or more of the following values:

• long-content: The EMSD-SA has messages held for delivery to the EMSD-UA which exceed the
permissible maximum-content-length control currently in force;

• low-priority: The EMSD-SA has messages held for delivery to the EMSD-UA of a lower priority than
the permissible-lowest-priority control currently in force;

In the absence of this result, it may be assumed that the EMSD-SA is not holding any messages for delivery to
the EMSD-UA due to the permissible-maximum-content- length, permissible-lowest-priority or permissible-
security context controls currently in force.

Errors

See Section 3.4.3.

3.2.3 deliveryVerify

The deliveryVerify ES-OPERATIONS enables the EMSD-UA to verify delivery of a message when it receives
FAILURE.indication for deliver ES-OPERATIONS.

deliveryVerify ES-OPERATION

ARGUMENT DeliveryVerifyArgument
RESULT DeliveryVerifyResult
ERRORS
{

verifyError,
resourceError,
protocolViolation

} ::= 5;

The duplicate operation detection is not required for this operation.

Arguments

This operation’s arguments are:

Banan Informational [Page 20]

RFC 2524 EMSDP February 1999

DeliveryVerifyArgument ::= SEQUENCE

{
-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
message-id EMSDMessageId

};

Message-id

This argument contains an EMSD-SA-identifier that distinguishes the message from all other messages. It
shall be generated by the EMSD-SA, and shall have the same value as the message-submission-identifier
supplied to the originator of the message when the message was submitted.

Results

DeliveryVerifyResult ::= SEQUENCE
{

status DeliveryStatus
};

DeliveryStatus ::= ENUMERATED
{

no-report-is-sent-out (1),
delivery-report-is-sent-out (2),
non-delivery-report-is-sent-out (3)

};

No-report-is-sent-out

This result indicates that EMSD-SA has received the delivery verify and no report is sent out (either because
it has not been requested or EMSD-SA has problems and can not send it out).

Delivery-report-is-sent-out

This result indicates that EMSD-SA has received the delivery verify and has sent the delivery report out.

Banan Informational [Page 21]

RFC 2524 EMSDP February 1999

Non-Delivery-report-is-sent-out

This result indicates that EMSD-SA has received the delivery verify but it has already sent out a non-Delivery
report. This should not happen in normal cases but a wrong user profile on EMSD-SA side can result in this
outcome.

Errors

See Section 3.4.3.

3.3 EMSD-SA Invoked Operations

This section defines the operations invoked by the EMSD-SA:

a. deliver;

b. submissionControl;

c. submissionVerify.

The deliver operation uses 3-Way handshake service of ESROS. This operation always uses the duplication
detection functional unit.

The submissionControl and submissionVerify operations use 2-Way handshake service of ESROS without
duplication detection.

3.3.1 deliver

The deliver ES-OPERATIONS enables the EMSD-SA to deliver a message to an EMSD-UA.

deliver ES-OPERATION

ARGUMENT DeliverArgument
RESULT NULL
ERRORS
{

deliveryControlViolated,
securityError,
resourceError,
protocolViolation,
messageError

} ::= 35;

Banan Informational [Page 22]

RFC 2524 EMSDP February 1999

The EMSD-UA MUST not refuse performing the deliver ES-OPERATION unless the delivery would violate
the deliveryControl restrictions then in force.

Arguments

This operation’s arguments are:

DeliverArgument ::= SEQUENCE
{

-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
message-id EMSDMessageId,

-- Time the message was delivered to the recipient by EMSD-SA
message-delivery-time DateTime,

-- Time EMSD-SA originally took responsibility for processing
-- of this message. This field shall be omitted if the message-id
-- contains an EMSDLocalMessageId, because that field contains
-- the submission time within it.
message-submission-time [0] IMPLICIT DateTime OPTIONAL,

-- Security features
security [1] IMPLICIT SecurityElement OPTIONAL,

-- SegContentTypementation features for efficient transport
segment-info SegmentInfo OPTIONAL,

-- The type of the content
content-type ContentType,

--
-- THE CONTENT --
--

-- The submitted (and now being delivered) content
content ANY DEFINED BY content-type

};

message-id

This argument contains an EMSD-SA-identifier that distinguishes the message from all other messages.
When within the EMSD, it MUST be generated by the EMSD-SA, and MUST have the same value as the

Banan Informational [Page 23]

RFC 2524 EMSDP February 1999

message-submission-identifier supplied to the originator of the message when the message was submitted.

Message-delivery-time

This argument contains the Time at which delivery occurs and at which the EMSD-SA is relinquishing re-
sponsibility for the message. It shall be generated by the EMSD-SA.

Results

This operation returns an empty result as indication of success.

Errors

See Section 3.4.3.

3.3.2 submissionControl

submissionControl ES-OPERATION
ARGUMENT SubmissionControlArgument
RESULT SubmissionControlResult
ERRORS
{

securityError,
resourceError,
protocolViolation

} ::= 4;

The submissionControl ES-OPERATIONS enables the EMSD-SA to temporarily limit the operations that the
EMSD-UA may invoke, and the messages that the EMSD-UA may submit to the EMSD-SA via the submit
ES-OPERATIONS.

The duplicate operation detection is not required for this operation.

The EMSD-UA should hold until a later time, rather than abandon, ES-OPERATIONS and messages that are
presently suspended.

The successful completion of the ES-OPERATIONS signifies that the specified controls are now in force.
These controls supersede any previously in force, and remain in effect until the association is released or the
EMSD-SA re-invokes the submissionControl ES-OPERATIONS.

The ES-OPERATIONS returns an indication of any ES-OPERATIONS that the EMSD-UA would invoke
were it not for the prevailing controls.

Banan Informational [Page 24]

RFC 2524 EMSDP February 1999

Arguments

This operation’s arguments are:

SubmissionControlArgument ::= SEQUENCE
{

-- Request an addition of or removal of a set of restrictions
restrict [0] IMPLICIT Restrict DEFAULT update,

-- Which operations are to be placed in the restriction set
permissible-operations [1] IMPLICIT Operations OPTIONAL,

-- What maximum content length should be allowed
permissible-max-content-length

[2] IMPLICIT INTEGER
(0..ub-content-length) OPTIONAL,

-- Security features
security [3] IMPLICIT SecurityElement

OPTIONAL
};

Restrict

This argument indicates whether the controls on ES-OPERATIONS are to be updated or removed. It may be
generated by the EMSD-SA.

This argument may have one of the following values:

• update: The other arguments update the prevailing controls;

• remove: All temporary controls are to be removed

In the absence of this argument, the default update shall be assumed.

Permissible-operations

This argument indicates the ES-OPERATIONS that the EMSD-UA may invoke on the EMSD-SA. It may be
generated by the EMSD-SA.

This argument may have the value allowed or prohibited for each of the following:

• submit: The EMSD-UA may/may not invoke the submit ES-OPERATIONS; and

Banan Informational [Page 25]

RFC 2524 EMSDP February 1999

• Other ES-OPERATIONS are not subject to controls, and may be invoked at any time.

In the absence of this argument, the ES-OPERATIONS that the EMSD-UA may invoke on the EMSD-SA are
unchanged.

Permissible-max-content-length

This argument contains the content-length, in octets, of the longest-content message that the EMSD-UA shall
submit to the EMSD-SA via the submit ES-OPERATIONS. It may be generated by the EMSD-SA.

In the absence of this argument, the permissible-maximum-content-length of a message that the EMSD-UA
may submit to the EMSD-SA is unchanged.

Security

See Section 3.4.1, ”SecurityElements”.

Results

SubmissionControlResult ::= SEQUENCE
{

-- Operation types queued at the EMSD-SA due to existing
-- restrictions.
waiting-operations [0] IMPLICIT Operations DEFAULT { }

};

Waiting-operations

This result indicates the ES-OPERATIONS being held by the EMSD-UA, and that the EMSD-UA would
invoke if it were not for the prevailing controls. It may be generated by the EMSD-UA.

This result may have the value holding or not-holding for each of the following:

• submit: The EMSD-UA is/is not holding messages, and would invoke the submit ES-OPERATIONS
if it were not for the prevailing controls.

In the absence of this result, it may be assumed that the EMSD-UA is not holding any messages for submis-
sion due to the prevailing controls.

Banan Informational [Page 26]

RFC 2524 EMSDP February 1999

Errors

See Section 3.4.3.

3.3.3 submissionVerify

The submissionVerify ES-OPERATIONS enables the EMSD-SA to verify if the EMSD-UA has received the
result of its submission.

submissionVerify ES-OPERATION

ARGUMENT SubmissionVerifyArgument
RESULT SubmissionVerifyResult
ERRORS
{

submissionVerifyError,
resourceError,
protocolViolation

} ::= 6;

The duplicate operation detection is not required for this operation.

Arguments

This operation’s arguments are:

SubmissionVerifyArgument ::= SEQUENCE

-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
{

message-id EMSDMessageId
};

Message-id

This argument contains an EMSD-SA-identifier that distinguishes the message from all other messages. It
shall be generated by the EMSD-SA, and shall have the same value as the message-submission-identifier
supplied to the originator of the message when the message was submitted.

Banan Informational [Page 27]

RFC 2524 EMSDP February 1999

Results

SubmissionVerifyResult ::= SEQUENCE
{

status SubmissionStatus
};

SubmissionStatus::= ENUMERATED
{

send-message (1),
drop-message (2)

};

Send-message

This result indicates that EMSD-SA is supposed to send the message out.

Drop-message

This result indicates that EMSD-SA is supposed to drop the message.

Errors

See Section 3.4.3.

3.4 EMSD Common Information Objects

3.4.1 SecurityElements

SecurityElement ::= SEQUENCE

{
credentials Credentials,
contentIntegrityCheck ContentIntegrityCheck OPTIONAL

};

Credentials ::= CHOICE
{

simple [0] IMPLICIT SimpleCredentials

-- Strong Credentials are for future study
-- strong [1] IMPLICIT StrongCredentials

Banan Informational [Page 28]

RFC 2524 EMSDP February 1999

-- externalProcedure [2] EXTERNAL
};

SimpleCredentials ::= SEQUENCE
{

eMSDAddress EMSDAddress OPTIONAL,
password [0] IMPLICIT OCTET STRING

SIZE (0..ub-password-length)) OPTIONAL
};

-- StrongCredentials ::= NULL
-- for now.
-- ContentIntegrityCheck is a 16-bit checksum of content
ContentIntegrityCheck ::= INTEGER (0..65535);

3.4.2 Message Segmentation and Reassembly

Small messages can benefit from the efficiencies of connectionless feature of ESROS (See Efficient Short
Remote Operations, RFC-2188 [1]).

Very large messages are transferred using protocols (e.g., SMTP) that rely on Connection Oriented Transport
Service (e.g., TCP).

When a message is too large to fit in a single connectionless PDU but is not large enough to justify the over-
head of connection establishment, it may be more efficient for the message to be segmented and reassembled
while the connectionless service of ESROS is used. If the underlying Remote Operation Service is capable of
efficient segmentation/reassembly over connectionless (CL) services, then use of the segmenting/reassembly
mechanism introduced in this section is not necessary. This feature is accommodated in this layer by:

SegmentInfo ::= CHOICE

{
first [APPLICATION 2] IMPLICIT FirstSegment,
other [APPLICATION 3] IMPLICIT OtherSegment

};

FirstSegment ::= SEQUENCE
{

sequence-id INTEGER,
number-of-segments INTEGER
-- number-of-segments must not exceed ub-total-number-of-segments

};

OtherSegment ::= SEQUENCE
{

sequence-id INTEGER,
segment-number INTEGER

};

Banan Informational [Page 29]

RFC 2524 EMSDP February 1999

Segmentation and reassembly only applies to Message-submission and Message-delivery.

The sender of the message is responsible for segmenting the message content into segments that fit in CL
PDUs. The segmented content is sent in a sequence of message- segments each carrying a segment of the
content. sequence-Id is a unique identifier that is present in all message-segments. In addition to sequence
identifier, the first message- segment specifies the total number of segments (number-of-segments). Other
message- segments have a segment sequence number (segment-number). The receiver is responsible for
sequencing (based on segment-number) and reassembling the entire message.

Segmenting over the Connectionless ESRO Service

The sender of the message maps the original message into an ordered sequence of message-segments. This
sequence shall not be interrupted by other messages over the same ESROS association.

All message-segments in the sequence shall be assigned a sequence identifier by sender. The sequence iden-
tifier shall be incremented by one by the sender after transmission of a complete message sequence.

The first message-segment specifies the total number of segments. All message- segments in the sequence
except the first one shall be sequentially numbered, starting at 1 (first message-segment has implicit segment
number of 0).

Each message-segment is transmitted by issuing a Message-submission or Message-delivery ES-OPERATIONS.
All segments of a segmented message are identified by the same sequence-id. For a given message, the re-
ceiver should not impose any restriction on the order of arrival of message-segments.

There is no requirement that any message-segment content be of maximum length allowed by ESROS for
connectionless transmission; however, no more than ub-total-number-of-segments segments can be derived
from a single message.

The receiver reassembles a sequence of message-segments into a single message. A message shall not be
further processed unless all segments of the message are received. Failure to receive the message shall be
determined by the following events:

• Expiration of Reassembly Timer (see Section 3.4.3).

• Receipt of a message-segment with different sequence identifier.

In the event of the above mentioned failures, the receiver shall discard a partially assembled sequence.

In Reassembly process, all arguments other than content are ignored in all segments except the first one. The
content parts of all segments are concatenated to compose the original message content.

When sender receives FAILURE.indication (as opposed to a resourceError) for a message-segment, the whole
message shall be retransmitted.

In the case of submission and delivery operations, the verify function is used as described below:

Receiver ignores FAILURE.indications received for message-segments, and just collects the message-segments
to complete the message. However, it keeps a failure status for a segmented message which says if any seg-

Banan Informational [Page 30]

RFC 2524 EMSDP February 1999

ment of the message has received FAILURE.indication. When receiver succeeds to assemble the whole
segmented message, then if the status of the message shows there has been a FAILURE.indication for any
of the message-segments, it verifies the message through verify operation. It’s not enough to invoke verify
operation just based on the last message-segment because the sender might send a segment without waiting
for the result of the previous segment. In such cases, there might be any combination of success and failure
for message- segments on the sender side.

Receiver uses the error code ResourceError (see Section 3.4.3) to ask for retransmission of a single segment
and uses the error code MessageError (see Section 3.4.3) to ask for retransmission of all segments (the whole
message).

Reassembly Timer

The Reassembly Timer is a local timer maintained by the receiver of message-segments that assists in per-
forming the reassembly function. This timer determines how long a receiver waits for all segments of a
message-segment sequence to be received. The timer protects the receiver from the loss of a series of seg-
ments and possible sequence identifier wrap-around.

The Reassembly Timer shall be started on receipt of a message-segment with different sequence identifier
than that previously received. The timer shall be stopped on receipt of all segments composing the sequence.

The value of Reassembly Timer is defined based on the network characteristics and the number of segments.
This requires that the transmission of all segments of a single message must be completed within this time
limit.

3.4.3 Common Errors

protocolVersionNotRecognized ERROR PARAMETER NULL ::= 1;

submissionControlViolated ERROR PARAMETER NULL ::= 2;

messageIdentifierInvalid ERROR PARAMETER NULL ::= 3;

securityError ERROR PARAMETER security-problem SecurityProblem ::= 4;

deliveryControlViolated ERROR PARAMETER NULL ::= 5;

resourceError ERROR PARAMETER NULL ::= 6;

protocolViolation ERROR PARAMETER NULL ::= 7;

messageError ERROR PARAMETER NULL ::= 8;

SecurityProblem ::= INTEGER (0..127);

Banan Informational [Page 31]

RFC 2524 EMSDP February 1999

protocolVersionNotRecognized

The major and minor protocol versions presented do not match those recognized as being valid.

submissionControlViolated

The Submission control violated error reports the violation by the MTS-user of a control on submission
services imposed by the MTS via the Submission control service. The Submission control violated abstract-
error has no parameters.

messageIdentifierInvalid

The Message Identifier Invalid error reports that the Message Identifier presented to the MTS is not considered
valid.

securityError

The Security error reports that the requested operation could not be provided by the MTS or MTS-user
because it would violate the security policy in force.

deliveryControlViolated

The Delivery control violated error reports the violation by the MTS of a control on delivery operations
imposed by the MTS-user via the Delivery-control operation.

resourceError

The messaging agent cannot currently support this operation. In the case of segmentation and reassembly,
resourceError is by the receiver used to request that the sender retransmit of a single segment.

protocolViolation

Indicates that one or more mandatory argument(s) were missing.

messageError

For a multi-segment message, this error indicates that the messaging agent has not received the message
completely and that the message must be retransmitted.

Banan Informational [Page 32]

RFC 2524 EMSDP February 1999

SecurityProblem

To ensure the security-policy is not violated during delivery, the message-security-label is checked against
the security-context. If delivery is barred by the security -policy then, subject to the security policy, a report
instruction for this is generated.

3.4.4 ContentType

ContentType ::= INTEGER
{

-- Content type 0 is reserved and shall never be transmitted.
reserved (0),
-- Content types between 1 and 31 (inclusive) are for
-- internal-use only
probe (1), -- reserved
delivery-report (2), -- reserved

-- Content types between 32 and 63 (inclusive) are for
-- message types defined within this specifications.
emsd-interpersonal-messaging-1995 (32),
voice-messaging (33) -- reserved

-- Content types beyond and including 64 are for
-- bilaterally-agreed use between peers.

} (0..127);

3.4.5 EMSDMessageId

If this message was originated as an RFC-822 message, then this EMSDMessageId shall be the “Message-
Id:” field from that message. If this message was originated within the EMSD domain, then this identifier
shall be unique for the EMSD-SA generating this id.

EMSDMessageId ::= CHOICE
{

EMSDLocalMessageId [APPLICATION 4]
IMPLICIT EMSDLocalMessageId,

rfc822MessageId [APPLICATION 5]
IMPLICIT AsciiPrintableString
(SIZE (0..ub-message-id-length))

};

EMSDLocalMessageId ::= SEQUENCE
{

submissionTime DateTime,
messageNumber INTEGER (0..ub-local-message-nu)

Banan Informational [Page 33]

RFC 2524 EMSDP February 1999

};

3.4.6 EMSDORAddress

EMSDORAddress ::= CHOICE
{

-- This is the local-format address
emsd-local-address-format EMSDAddress,

-- This is a globally-unique RFC-822 Address
rfc822DomainAddress AsciiPrintableString

};

In the global sense Originators and Recipients are represented by EMSDORAddress. The rfc822Domain
may be used to address any recipient.

3.4.7 EMSDAddress

EMSDAddress ::= SEQUENCE
{

emsd-address OCTET STRING (SIZE
(1..ub-emsd-address-length)),

-- emsd-address is a decimal integer in BCD
(Binary Encoded Decimal) format.

-- If it had an odd number of digits, it is
-- padded with 0 on the left.

emsd-name [0] IMPLICIT OCTET STRING
(SIZE (0..ub-emsd-name-length))
OPTIONAL

};

Originator and Recipients in the scope of EMSD network are identified by a digit based addressing scheme.
EMSDAddress can only be used where the scope of addressing has clearly been limited to the EMSD network.

3.4.8 DateTime

DateTime ::= INTEGER;

DateTime is a Julian date, expressed as the number of seconds since 00:00:00 UTC, January 1, 1970.

Banan Informational [Page 34]

RFC 2524 EMSDP February 1999

3.4.9 AsciiPrintableString

Iso8859String ::= GeneralString;

AsciiPrintableString ::= [APPLICATION 0]
IMPLICIT Iso8859String (FROM

(" "|"!"|"#"|"$"|"%"|"&"|"’"|"("|")"|"*"|"+"|","|"-"|"."|"/"|
"0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|":"|";"|"<"|"="|">"|
"?"|"@"|"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
"N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"|"["|"]"|
"ˆ"|"_"|"‘"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|"l"|
"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"w"|"x"|"y"|"z"|"{"|
"|"|"}"|"˜"|"\"|""""));

3.4.10 ProtocolVersionNumber

ProtocolVersionNumber ::= [APPLICATION 1] SEQUENCE
{

version-major INTEGER,
version-minor [0] IMPLICIT INTEGER DEFAULT 0

}

3.5 Submission and Delivery Procedures

Table 1 provides a comprehensive summary of EMSD-P operations, the SAP selectors used and the operation
IDs used.

Submission

The semantics of a submission operation is Exactly Once. Exactly Once means that every operation is car-
ried out exactly one time, no more and no less. This semantic can not be fully implemented because, if
after invoking the operation, an invoker has a Success (e.g. result) indication and the performer has a FAIL-
URE.indication, and the network goes down, the result of the operation will be Zero (and not Exactly Once).

No more than one is controlled and guaranteed by the performer by using the Duplicate Operation Detection
Support Functions (see the chapter entitled Duplicate Operation Detection Support).

Not zero but one is realized by performer by using the SubmissionVerify operation. When the performer
receives FAILURE.indication, it’s responsibility is to resolve the case by using SubmissionVerify resulting
in Not zero but one.

Submission procedure is as follows:

Banan Informational [Page 35]

RFC 2524 EMSDP February 1999

+------------------+-------+----+---------+----+---------+-----+-----+
Operation	Invoker	Sap	Performer	Sap	Duplicate	OpId	ESROS
		Sel		Sel	Detect		Use
__________________	_______	____	_________	____	_________	_____	_____
submit	UA	4	MTS	5	Yes	33	3-Way
__________________	_______	____	_________	____	_________	_____	_____
deliver	MTS	2	UA	3	Yes	35	3-Way
__________________	_______	____	_________	____	_________	_____	_____
deliveryControl	UA	8	MTS	9	No	2	2-Way
__________________	_______	____	_________	____	_________	_____	_____
submissionControl	MTS	6	UA	7	No	4	2-Way
__________________	_______	____	_________	____	_________	_____	_____
submissionVerify	MTS	6	UA	7	No	6	2-Way
__________________	_______	____	_________	____	_________	_____	_____
deliveryVerify	UA	8	MTS	9	No	5	2-Way
__________________	_______	____	_________	____	_________	_____	_____
getConfiguration	UA	8	MTS	9	No	7	2-Way
__________________	_______	____	_________	____	_________	_____	_____
setConfiguration	MTS	6	UA	7	No	8	2-Way
+------------------+-------+----+---------+----+---------+-----+-----+

Table 1: EMSD-P Operations Summary

• Submit operation with 3-Way handshake and Duplicate Operation Detection Support Function is in-
voked.

• If performer at EMSD-SA receives FAILURE.indication, it invokes SubmissionVerify.

• Message is sent out by EMSD-SA only if result operation is confirmed or the operation is verified (in
the case of FAILURE.indication).

The semantic of SubmissionVerify operation is At Least Once. This type of semantics corresponds to the
case that invoker keeps trying over and over until it gets a proper reply. This operation can be performed
more than once without any harm.

Implications:

• MTS sends out the message if and only if it’s sure that UA knows about it.

Delivery

The semantics of Deliver operation is Exactly Once. Exactly Once means that every operation is carried out
exactly one time, no more and no less. This semantic can not be fully implemented and if after invoking
the operation, invoker has Success indication and performer has FAILURE.indication, and the network goes
down, the result of the operation will be Zero (and not Exactly Once).

No more than one is controlled and guaranteed by performer and by using the Duplicate Operation Detection
Support Functions.

Banan Informational [Page 36]

RFC 2524 EMSDP February 1999

Not zero but one is realized by performer by using the DeliveryVerify operation. When performer receives
FAILURE.indication, it’s responsible to resolve the case by using DeliveryVerify resulting in Not zero but
one.

Delivery procedure is as follows:

• Deliver operation with 3-Way handshake is invoked.

• If performer at User Agent (device) receives FAILURE.indication, it invokes DeliveryVerify.

The semantic of DeliveryVerify operation is At Least Once. This type of semantics corresponds to the case
that invoker keeps trying over and over until it gets a proper reply. This operation can be performed more
than once without any harm.

Implications:

• A non-delivery report is sent by MTS only if the message is not delivered.

• The UA is responsible for notifying the MTS (through an explicit deliveryVerify) to make sure that a
delivery report is sent out.

4 DUPLICATE OPERATION DETECTION SUPPORT

4.1 Duplicate Operation Detection Support Overview

Some operations are idempotent in nature, i.e. they can be performed more than once without any harm.
However, some other operations are non-idempotent in nature, i.e. they should be performed only once. In
the case of non-idempotent operations, performer should be able to detect duplicate operations and perform
each non- idempotent operation only once.

Examples of non-idempotent operations are Submission and Delivery of messages which shouldn’t be per-
formed more than once. Examples of idempotent operations are Submission-control and Delivery-control
which can be performed more than once with no harm.

ESRO Services don’t detect duplicate invocation of operations. As a result, the Duplicate Operation Detection
Support Functional Unit is used to detect duplication when the same operation instance is invoked more than
once. Invoker assigns an Operation Instance Identifier to an operation and this Operation Instance Identifier
is used at the peer performer entity to detect the duplicate invocation of the same operation.

Using this support, non-idempotent operations can be repeated over and over with no harm because the
duplicate invocations are detected by this functional unit. This support helps the performer not to perform an
operation more than once.

Support for duplication detection is realized through allocating Operation Instance Id (see Section 4.1.2,
”Operation Instance Identifier”) to an operation by invoker. When an operation is invoked using duplication
detection support, performer logs the Operation Instance Identifier and checks the next operations against
duplication.

Banan Informational [Page 37]

RFC 2524 EMSDP February 1999

Operation value identifies whether performer should detect duplicate operations (see Section 4.1.1, “Op-
eration Value”) and Operation Instance Id is assigned by invoker and sent as the first byte of operation’s
parameter.

4.1.1 Operation Value

Operation Values are divided into two groups. Operation values from 0 to 31 do not have Duplicate Operation
Detection Support (0 to 31) and operation values from 32 to 63 have Duplicate Operation Detection Support.

Duplicate Operation Detection Functional Unit checks for duplication only if Operation Value is in the range
of 32 to 63.

When invoker user uses an Operation Value in the range of 32 to 63 which means operation with support for
duplication detection, the user should specify an Operation Instance ID for the operation (see next section).

4.1.2 Operation Instance Identifier

To support duplication detection, an Operation Instance Identifier is assigned by invoker user and sent as the
first byte of the operation’s parameter. This identifier is used on performer side to detect duplicate invocation
of the same operation. Characteristics of Operation Instance Identifier is as follows:

• Operation Instance Identifier is one byte and can have values from 0 to 255.

• Operation Instance Identifier is sent as the first byte of the operations parameter (without encoding).

• The length of Operation Instance Identifier is 8-bit, but depending on the performer capabilities, it
might keep 0 to 127 Operation Instance Identifiers for duplication detection. The performer profile
defines the number of outstanding Operation Instance Identifiers that are checked against duplication.
When a performer profile indicates support for 0 outstanding Operation Instance Identifier, it means
it does not have support for Duplicate Operation Detection. In this case, there should be only one
outstanding operation at any point of time.

• Instance ID check is not part of ESROS, per se. Use of Duplicate Detection is determined by EMSD-
P. Operation Instance ID for operations 32-63 is the first byte of the argument. Duplicate Detection
suuport strips that byte.

• The Instance ID is not subject to Basic Encoding Rules (BER).

• The invoker user assigns the Operation Instance Identifier to the operation at the time of requesting
the invoke service. The Operation Value should be in the range of operation values with duplication
detection support, i.e. 32 to 63.

• It’s the responsibility of the user to choose Operation Instance Identifier in a way that uniqely and
unambiguously identifies the operation.

• From the invoker’s perspective, assumption is that two operations with the same operation Instance
Identifier are totally identical which means they produce exact same results.

Banan Informational [Page 38]

RFC 2524 EMSDP February 1999

• Operation Instance Identifier uniqely specifies a non-idempotent operation and multiple invocations
of such an operation will eventually result in the same outcome because the duplicate instances are
identified and the operation is not performed more than once.

• From the performer’s perspective, assumption is that two operations with the same Operation Instance
Identifier should be executed once and once only.

• If requested, the degree of duplication checked by Duplicate Operation Detection Support Functional
Unit on the performer’s side (i.e. the total number of outstanding Operation Instance Identifier kept)
can be communicated with the invoker to synchronize the invocations.

• User of Duplicate Operation Detection Support is responsible to behave based on the performer profile
and its limitations in this regard. This behavior is defined based on the desired semantic of the operation
which is to be implemented.

• On the performer side, when an Operation Instance Identifier is received, a previous Operation Instance
Identifier whose distance to this latest one is greater than or equal to half of the wrap-around range of
the Operation Instance Identifier number is expired, i.e. for an 8-bit Operation Instance Identifier, the
distance of 128 causes an old Operation Instance Identifier to expire.

• It’s the responsibility of the invoker user to use consecutive Operation Instance Identifier numbers,
or when it skips some Operation Instance Identifiers, it should remember that if there is an smaller
Operation Instance Identifier on performer side with the distance explained above, it will be expired.

5 EMSD PROCEDURE FOR OPERATIONS

The following sections shows the general procedures to be used in the implementation of the EMSD Message
Transfer Server (MTS) and the EMSD User Agent (UA), with the option for 3-Way or 2-Way handshakes
on operations which support them. These procedures do not constitute complete behavior specifications for
implementations. The following sections contain information helpful to implementors.

The MTS and the UA are event-driven. Each waits for any of the possible event types, and, upon receiving
an event, processes it. After processing the event, the next event is waited upon.

5.1 MTS Behavior

The MTS is event-driven.

If it received an event from ESROS, then it could be any of the following types:

• Message submit indication;

• Message submit confirm and failure indication;

• Result and Error indication for a deliver operation;

• DeliveryVerify indication;

• Result and Error indication for a submissionVerify operation;

Banan Informational [Page 39]

RFC 2524 EMSDP February 1999

• Result and Error indication for a submissionControl operation;

• DeliveryControl indication.

For an ESROS event responsibility is passed to the MTS performer (Section 5.1.1).

If the MTS received an event:

• for message delivery, from the RFC-822 mailer;

• requesting submission controls upon the UA, or;

• indicating an elapsed timer (meaning that it’s time to re-attempt a message delivery)

then responsibility is passed to the MTS invoker (Section 5.1.5).

5.1.1 MTS Performer

The MTS performer is responsible for processing the following operations, received from ESROS:

• Message-submission

• Delivery-control

• Delivery-verify

The MTS performer should first make sure that it has received an INVOKE.indication. Any other type of
primitive shouldn’t be occurring at this point, and should be ignored.

If there’s something wrong with the PDU or operation data, the MTS performer should send back an error to
the proper invoker:

1. Send an ESROS Error Request, then go wait for a response (either a confirmation or a failure indica-
tion). The response is sent back on the same SAP type on which the event occurred.

2. Keep track of the type of request that was issued.

If there isn’t anything wrong with the PDU or operation data, then the MTS performer has received a valid
event from ESROS. This could be any of the defined Submission and Delivery Protocol operations.

5.1.2 Message-submission

1. The Message-submission operation first checks to see which SAP this Submit Request came in on.

2. The request could have arrived as 2-Way SAP (see #3) or a 3-Way SAP (see #7).

Banan Informational [Page 40]

RFC 2524 EMSDP February 1999

3. If the event arrived on the 2-Way SAP, consider this a protocol violation and ignore it.

4. Wait for a response to the request. The response could be either an ERROR.confirm (see #5) or a
FAILURE.indication (see #6).

5. The ERROR.request has been confirmed. The UA knows that the submitted message wasn’t sent. Since
there was an error, there is nothing more to do, so return.

6. If the result to the ErrorRequest is a Failure.indication, it can be assumed that either the UA has re-
ceived nothing (the ERROR.request PDU was lost), which means failure for the UA; or that the 3-Way
acknowledgment was lost, which means that the UA has in fact received the ERROR.request PDU and
knows about the delivery failure. Either way, the message can be ignored. There is nothing more to do,
so return.

7. If the event was received on the 3-Way SAP, then this is the correct SAP on which to receive a Submit
Request. Send back a Result Request and keep track of the primitive which was issued.

8. Now wait for a response to our request. The response will be either a Result.confirm (see #9) or a
Failure.indication (see #13).

9. The RESULT.request has been confirmed.

10. Submit the message to the RFC-822 mailer.

11. Attempt, a number of times, to send the submitted message via the RFC-822 mailer. If the send was
successful, then return.

12. If, after the maximum number of retries, the message was not able to be sent, consider it a failure.
Since the UA assumption has been that submission was successful, but now it has not been sent, a
brand new message, a Non-Delivery message, must be generated and delivered to the UA. When this
is completed, then return.

13. A FAILURE.indication has occurred due to the previously issued RESULT.request.

14. A Submission Verification is issued to the UA to see if the RESULT.request was received. There are
three possible results from sending the submission verification to the UA: Fail (see #15), Send Message
(see #16) or Drop Message (see #20).

15. Fail – The Submission-verify request didn’t reach the UA, or the Submission Verify response didn’t
get back. Ignore the message and return.

16. The Submission Verify operation succeeded, meaning that the UA received the request, and responded
with a message stating that it wants the message to be sent.

17. Attempt, a number of times, to send the submitted message via the RFC-822 mailer.

18. If the message was submitted to the RFC-822 mailer successfully, then return. If, after the maximum
number of retries, the message was not able to send the message, consider it a failure.

19. The UA already assumes that the Message-submission was successful. Now since the submitted mes-
sage has not been sent, a brand new message, a Non-Delivery message, must be generated and delivered
to the UA. After this is accomplished, then return.

20. The UA responded with a message stating that the message should be dropped. This may occur if
the UA never received the result from the MTS, meaning that it never received the Message Id, and
had to therefore inform the user that the message couldn’t be submitted. This may also occur if the
UA doesn’t have the record of the message being verified. It can be because the message record has
been aged and expired, or because the EMSD-UA has not been able to keep the record of the received
message because of storage or memory limitations. There is nothing to do, so return.

Banan Informational [Page 41]

RFC 2524 EMSDP February 1999

5.1.3 Delivery-control

This operation can be processed immediately. After it is processed, the appropriate result is returned.

5.1.4 Delivery-verify

This operation occurs when the UA doesn’t think that the MTS has received the RESULT.indication from a
previously delivered message. The UA wants to make sure that the MTS knows it has been delivered. The
MTS will determine what it knows of the specified message, and send back a result. This can be processed
immediately, as it doesn’t need to deal with duplicate detection.

5.1.5 MTS Invoker

The MTS invoker is responsible for processing the following operations, received from ESROS:

• Message-delivery

• Submission-control

• Submission-verify

Submission-control

Process the Submission Control request.

Message-delivery

1. Check the User Agent’s profile to determine the SAP.

2. Set the SAP to 3-Way.

3. Issue the INVOKE.request on the appropriate SAP, with duplication detection enabled. Since a local
error is possible on issuing the INVOKE.request, a retry counter is needed.

4. There are three possible events possible in result to the INVOKE.request: an ERROR.indication (see
#5), a RESULT.indication (see #9) or a FAILURE.indication (see #10).

5. An ERROR.indication was received, which means that the UA can’t accept the message right now.

6. If the reason was one of a transient nature, wait for a while and then send the Deliver Request again.

7. If the reason was one of a permanent nature, send back a non-delivery report to the originator.

8. Since the error was one of a permanent nature, then the MTS must send back a non-delivery report,
then log the unsuccessful delivery with error from UA and return.

Banan Informational [Page 42]

RFC 2524 EMSDP February 1999

9. A RESULT.Indication was returned, which means that the Delivery was successful. Send a delivery
report to the originator if one was requested and log successful delivery and return.

If the UA profile indicated that Complete mode was to be used, keep track of the fact that this message
has been successfully delivered (as far as the MTS is concerned), so that if the UA sends us a Delivery
Verify operation, we know that we consider the message to be delivered.

10. A FAILURE.indication was returned, which means there was a problem getting the Deliver Request to
the UA, or in getting the response back from the UA. In any case, a response was never received, so
the request timed out. Wait for a while, and then send the Deliver Request again.

As long as a FAILURE.indication is returned and the number of retries has not been exceeded, keep
trying to verify the delivery.

Submission-verify

The Submission-verify operation is always issued on the 2-Way SAP. The response is awaited. If a response
doesn’t come, the request is queued and attempted again later.

1. Issue the INVOKE.request on the 2-Way SAP, with duplication detection disabled. Since a local error
on issuing the invoke request is possible, a retry counter is needed.

2. An INVOKE.Request has been issued and a response has been received. The response will be either
a a RESULT.indication (see #3) or a FAILURE.indication (see #4). There are no defined errors to a
Submission Verify operation, so an ERROR.indication should not be occurring here.

3. A RESULT.indication was received. Either ResponseSendMessage or ResponseDropMessage, as spec-
ified in the PDU, will be returned.

4. A FAILURE.indication was received, which means that there was a problem getting the Submission
Verify Request to the UA, or in getting the response back from the UA. In any case, the response
was never received, so the request timed out. Wait for a while, and then another attempt to send the
Submission Verify request is needed.

Non-Delivery Report

Issue an INVOKE.request containing a Submit operation with a content type of Non- Delivery Report, to the
UA. This operation is always issued on the 2-Way SAP. The response is awaited. If a response doesn’t come,
the request is queued and attempted again later.

1. Create a Submit operation.

2. Issue the INVOKE.request on the 2-Way SAP, with duplication detection enabled. Since a local error
on issuing the invoke request is possible, a retry counter for is needed.

3. A response to the INVOKE.Request has been received. The response will be either a RESULT.indication
(see #5), ERROR.indication (see #4), or a FAILURE indication (see #7).

4. An ERROR.indication was received, which means that the UA doesn’t know what to do with our non-
delivery report. That’s the UAs problem, so just do nothing and return.

Banan Informational [Page 43]

RFC 2524 EMSDP February 1999

5. A RESULT.indication was received, which means we delivered a successful non-delivery report.

6. The result is logged. Nothing more is needed, so return.

7. A FAILURE.indication was received, which means there was a problem getting the Submit Request
to the UA, or in getting the response back from the UA. In any case, the response was never, so the
request timed out. Wait for a while, and then send the Submission Verify request again.

5.2 UA Behavior

The User Agent is event-driven.

If it received an event from ESROS, then it could be any of the following types:

• Message deliver indication;

• Message deliver confirm and failure indication;

• Result and Error indication for a submit operation;

• Submission verify indication;

• Result and Error indication for a delivery verify operation;

• Result and Error indication for a delivery control operation;

• Submission control indication.

For an ESROS event responsibility is passed to the UA performer (Section 5.2.1).

IF the UA received an event indicating that there’s a message from the user, for submission, then responsibility
is passed to the UA invoker (Section 5.2.2).

5.2.1 UA Performer

The performer on the UA side is responsible for processing the following operations:

• Message Delivery

• Submission Verification

• Submission Control

Banan Informational [Page 44]

RFC 2524 EMSDP February 1999

Message-delivery

1. A Message-delivery request is received.

2. Check for the correctness of the PDU. If the PDU is bad the see #3. If the PDU is good then see #8.

3. Send an ESROS ERROR.request. If the request arrived on a 3-Way SAP, use a 3-Way SAP for the
result. If the request arrived on a 2-Way SAP, use a 2-Way SAP for the result. Keep track of the type
of request that was issued.

4. Wait for the ESROS event. The result could be an ERROR.confirm (see #5) or a FAILURE.indication
(see #7).

5. The ESROS event was an ERROR.confirm

6. Log the message as the Non-Delivery was confirmed by the MTS and return.

7. If the ESROS event was a FAILURE.indication, that means one of two things has occurred:

A. The MTS has received nothing (the ERROR.request PDU was lost), which means that the MTS
doesn’t know that the message delivery has been rejected. In this case, the MTS will eventually
time out, and retransmit the message delivery request.

B. The 3-Way acknowledgment was lost, which means that the MTS has in fact received the ER-
ROR.request PDU and knows about the delivery failure.

Either way, the message can now be ignored.

8. Send an ESROS RESULT.request. If the request arrived on a 3-Way SAP, use a 3-Way SAP for the
result. If the request arrived on a 2-Way SAP, use a 2-Way SAP for the result. Keep track of the type
of request that was issued.

9. Wait for the ESROS event. The result could be an RESULT.confirm (see #10) or a FAILURE.indication
(see #13).

10. If the event is a RESULT.confirm, then the delivered message can now be given to the user.

11. Deliver the message to the user.

12. Log the message as Message Delivery Known to MTS.

13. If the event is a FAILURE.indication, then, if the delivery was on a 3-Way SAP, a Delivery Verification
request to the MTS can be issued to see if the MTS actually got the RSULT.request. If the delivery
was on a 2-Way SAP, then the message will delivered to the user and if the MTS has not received the
RESULT.request, it will retransmit it later and the duplicate will be ignored.

14. Deliver the message to the user. Since a FAILRUE.indication was received in response to a RE-
SULT.requst, it means that possible, the MTS didn’t receive the RESULT.request. The MTS could
now time out, and send another copy of the same message. Save the message for duplication detection.

15. Log the fact that the message was delivered, but that the MTS might not be aware of it.

16. If the UA supports Delivery Verification, and the Delivery Request was sent on the 3-Way SAP, then
see #17. If either of these conditions are not true, then return.

17. Send a Delivery-verify request to see if the MTS got the RESULT.request.

There are three possible results from sending the delivery verification to the MTS: Fail (see #18),
ResponseNonDelivery (see #20) or ResponseDelivery (see #23).

Banan Informational [Page 45]

RFC 2524 EMSDP February 1999

18. Fail – Delivery Verify request didn’t reach the MTS, or the Delivery Verify response didn’t get back to
the UA.

19. Log this as delivering the message to the user, but the MTS having possibly sent a Non-Delivery report
to the originator even though the UA did actually deliver the message to the user. Then return.

20. ResponseNonDelivery – Verify Response indicates that the MTS now knows (because of the Deliv-
ery Verify operation that the message has been delivered to the user, but had not received our RE-
SULT.request nor a Delivery Verify operation in a timely manner, and had already sent out a Non-
Delivery report to the originator.

21. The MTS had not received, from the UA, in a timely manner, a RESULT.indication indicating that
the message had been delivered to the user. The MTS has already sent a Non-Delivery report to the
originator. The UA must let the user know about this. Log the message as delivered to the user, but a
Non-Delivery sent to the originator.

22. Since the UA received a response to the Verify operation, it knows that the MTS knows about this
message delivery, so the UA also knows that it won’t be receiving a duplicate of it. The UA can now
remove this message’s Message Id from the list of possible duplicates.

23. ResponseDelivery – Verify Response received from MTS.

24. This means that the MTS knows (either because the MTS had received the RESULT.request that was
sent by the UA or because the MTS has now received the UAs Delivery-verification message, informing
that the UA received the message for delivery to the user. The MTS is (or was) able to send a Delivery
report to the originator if one was requested. Log it as such.

25. Since the UA received a response to the Verify operation, it knows that the MTS knows about this
message delivery, so the UA also knows that it won’t be receiving a duplicate of it. The UA can now
remove this message’s Message Id from the list of possible duplicates and return.

Submission-verify

Process the Submission-verify request and return.

Submission-control

This operation can be processed immediately. After it is processed, the appropriate result is returned.

5.2.2 UA Invoker

The invoker on the UA side is responsible for processing the following operations:

• Message-submission

• Delivery-control

• Delivery-verify

Banan Informational [Page 46]

RFC 2524 EMSDP February 1999

Message-submission

General procedures for UA’s Message-submission mirror that of MTS’s Message-delivery.

Delivery-control

1. Issue the INVOKE.request on the 3-Way SAP, with duplication detection enabled. Since the UA can
get a local error on issuing the invoke request, a retry counter is needed.

If we got a local failure in issuing the Invoke Request, wait a while and then try again (up to the limit
of the maximum number of retries).

2. The UA has issued an INVOKE.Request. Wait for a response from ESROS. The response will be either
a RESULT.indication (see #5), ERROR.indication (see #3), or FAILURE.indication (see #7).

3. A ERROR.indicaiton was received, meaning that the MTS told says that it cannot accept the message.

4. Log the MTS rejection and return

5. A RESULT.indication was received, which means that the Submission was successful.

6. Log successful submission and return.

7. a FAILURE.indication was received, meaning that there was a problem getting the Submit Request
to the MTS, or in getting the response back from the MTS. In any case, the UA never received the
response, so the request timed out. Wait for a while, and then send the Submit Request again.

8. The UA has exceeded the maximum number of retries. Let the user know, log the failure and return.

Delivery-verify

General procedures for UA’s Delivery-verify mirror that of MTS’s Submission-verify.

6 EMSD FORMAT STANDARDS

6.1 Format Standard Overview

EMSD Format Standard (EMSD-FS) is a non-textual form of compact encoding of Internet mail (RFC-822)
messages which facilitates efficient transfer of messages. EMSD-FS is used in conjunction with the EMSD-
P but is not a general replacement for RFC-822. EMSD-FS defines a method of representation of short
interpersonal message. It defines the “Content” encoding (Header + Body). Although EMSD-FS contains
end-to-end information its scope is purely point-to-point.

The ”Efficient InterPersonal Message Format Standard” is defined in this section. This standard is primarily
intended for communication among people.

The EMSD Format Standard is designed to be fully consistent with RFC-822 [3]. In many ways EMSD-FS
can be considered to be an efficiency oriented encoder and decoder. Through use of EMSD-FS an RFC-822

Banan Informational [Page 47]

RFC 2524 EMSDP February 1999

message is converted to a more compact binary encoding. This more compact message is then transfered
between an EMSD-SA and EMSD-UA. The compact message (represented in EMSD-FS) may then be con-
verted back to RFC-822 intact.

For messages that are originated (submitted) with EMSD protocol, certain fields (e.g., addresses, message-id)
can have special forms that are specialized and produce more compact EMSD-FS encoding. These special
forms are legitimate values of RFC-822 messages.

This specification expresses information objects using ASN.1 [X.208]. Encoding of ASN.1 shall be based
on Basic Encoding Rules (BER) [5]. Future revisions of this specification will use Packed Encoding Rules
(PER) [4].

The convention of (O) ”OPTIONAL”, (D) ”DEFAULT”, (C) ”CONDITIONAL” and (M) ”MANDATORY”
which express requirements for presence of information is used in this section.

6.2 Interpersonal Messages

An interpersonal message (IPM) consists of a heading and a body.

IPM ::= SEQUENCE

{

heading Heading,

body Body OPTIONAL

};

6.2.1 Heading fields

The fields that may appear in the Heading of an IPM are defined and described below.

Heading ::= SEQUENCE
{

-- Address of the sending agent (person, program, machine) of
-- this message. This field is mandatory if the sender
-- is different than the originator.
sender [0] EMSDORAddress OPTIONAL,

-- Address of the originator of the message
-- (not necessarily the sender)
originator EMSDORAddress,

-- List of recipients and flags associated with each.

Banan Informational [Page 48]

RFC 2524 EMSDP February 1999

recipient-data SEQUENCE SIZE (1..ub-recipients)
OF PerRecipientFields,

-- Flags applying to this entire message
per-message-flags [1] IMPLICIT BIT STRING

{
-- Priority values
-- At most one of "non-urgent" and "urgent" may be specified
-- concurrently. If neither is specified, then a Priority
-- level of "normal" is assumed.
priority-non-urgent (0),
priority-urgent (1),

-- Importance values
-- At most one of "low" and "high" may be specified
-- concurrently. If neither is specified, then an
-- Importance level of "normal" is assumed.
importance-low (2),
importance-high (3),

-- Indication of whether this message has been
automatically forwarded

auto-forwarded (4)
} OPTIONAL,

-- User-specified recipient who is to receive replies
to this message.

reply-to [2] IMPLICIT SEQUENCE SIZE
(1..ub-reply-to)

OF EMSDORAddress OPTIONAL,

-- Identifier of a previous message, for which this message
-- is a reply
replied-to-IPM EMSDMessageId OPTIONAL,

-- Subject of the message.
subject [3] IMPLICIT AsciiPrintableString

(SIZE (0..ub-subject-field))
OPTIONAL,

-- RFC-822 header fields not explicitly provided for in
-- this Heading. For messages incoming from the external
-- world (i.e. in RFC-822 format), the Message-Id: field
-- need not go here, as it is placed in the
-- Envelope’s EMSDMessageId (message-id) field.
extensions [4] IMPLICIT SEQUENCE

(SIZE (0..ub-header-extensions))
OF IPMSExtension OPTIONAL,

-- MIME Version (if other than 1.0)

Banan Informational [Page 49]

RFC 2524 EMSDP February 1999

mime-version [5] IMPLICIT AsciiPrintableString
(SIZE (0..ub-mime-version-length))

OPTIONAL,

-- Top-level MIME Content Type
mime-content-type [6] IMPLICIT AsciiPrintableString

(SIZE (0..
ub-mime-content-type-length))

OPTIONAL,

-- MIME Content Id
mime-content-id [7] IMPLICIT AsciiPrintableString

(SIZE (0..
ub-mime-content-id-length))

OPTIONAL,

-- MIME Content Description
mime-content-description [8] IMPLICIT AsciiPrintableString

(SIZE (0..ub-mime-content-
description-length))

OPTIONAL,
-- Top-level MIME Content Type
mime-content-transfer-encoding

[9] IMPLICIT AsciiPrintableString
(SIZE (0..ub-mime-content-
transfer-encoding))

OPTIONAL
};

Some fields have components and thus are composite, rather than indivisible. A field component is called a
sub-field.

Sender

This field is mandatory if the sender is different from the originator.

Originator

The Originator heading field (O) identifies the IPM’s originator.

Recipient-data

PerRecipientFields ::= SEQUENCE
{

recipient-address EMSDORAddress,

Banan Informational [Page 50]

RFC 2524 EMSDP February 1999

per-recipient-flags BIT STRING

{
-- Recipient Types.
-- At most one of "copy" and "blind-copy" may be
-- specified concurrently for a single recipient. If
-- neither is specified, than the recipient
-- is assumed to be a "primary" recipient.
recipient-type-copy (0),
recipient-type-blind-copy (1),

-- Notification Request Types.
-- Only one of "rn" and "nrn" may be specified
-- concurrently, \\x110011 for a single recipient.
-- "rn" implies "nrn" in addition.
notification-request-rn (2),
notification-request-nrn (3),

notification-request-ipm-return (4),

-- Report Request Types
-- At most one of these should be set for a
-- particular recipient. "delivery" implies "non-delivery"
-- in addition.
report-request-non-delivery (5),
report-request-delivery (6),

-- Originator-to-Recipient request for a reply.
reply-requested (7)
} DEFAULT { report-request-non-delivery }

};

recipient-address

The Primary Recipients heading field identifies the zero or more users who are the ”primary recipients” of
the IPM. The primary recipients might be those users who are expected to act upon the IPM.

per-recipient-flags

The Copy Recipients heading field identifies the zero or more users who are the ”copy recipients” of the IPM.
The copy recipients might be those users to whom the IPM is conveyed for information.

recipient-type-copy

This field is set if the recipient is on the Carbon Copy (CC) list.

Banan Informational [Page 51]

RFC 2524 EMSDP February 1999

recipient-type-blind-copy

This field is set if the recipient is on the Blind Carbon Copy (BCC) list.

The Blind Copy Recipients heading field (C) identifies zero or more users who are the intended blind copy
recipients of the IPM.

The phrase ”copy recipients” above has the same meaning as in ”Copy Recipients” from Section 6.2.1 . A
blind copy recipient is one whose role as such is disclosed to neither primary nor copy recipients.

In the instance of an IPM intended for a blind copy recipient, this conditional field shall be present and
identify that user. Whether it shall also identify the other blind copy recipients is a local matter. In the
instance of the IPM intended for a primary or copy recipient, the field shall be absent.

notification-request-rn

A receipt notification (rn) reports its originator’s receipt, or his expected and arranged future receipt, of an
IPM.

notification-request-nrn

A non-receipt notification (nrn) reports its originator’s failure to receive, to accept, or his delay in receiving,
an IPM.

notification-request-ipm-return

When this field is set, the contents of the message are returned along with the notification.

report-request-non-delivery

The report request enables the MTS to acknowledge to the MTS-user one or more outcomes of a previous
invocation of the message-submission or probe-submission abstract-operations.

A report is returned only in case of non-delivery.

report-request-delivery

For the message-submission, report-delivery indicates the delivery or non-delivery of the submitted message
to one or more recipients. For the probe-submission, the report- delivery indicates whether or not a message
could be delivered if the message were to be submitted.

Banan Informational [Page 52]

RFC 2524 EMSDP February 1999

reply-requested

When set this field indicates that the originator requests that a recipient send a message in reply to the message
which carries the request.

per-message-Flags

Priority

The Priority field (default is normal) identifies the priority that the authorizing users attach to the IPM. It may
assume any one of the following values: urgent, normal, or non-urgent.

At most one of either ”non-urgent” or ”urgent” may be specified concurrently. If neither is specified, then a
Priority level of ”normal” is assumed.

Importance

The Importance heading field (default normal) identifies the importance that the authorizing users attach to
the IPM. It may assume any one of the following values: low, normal, or high.

At most one of either ”low” or ”high” may be specified concurrently. If neither is specified, then a Importance
level of ”normal” is assumed.

The values above are not defined by this specification; they are given meaning by users.

auto-forwarded

The Auto-forwarded heading field (default is false) indicates whether the IPM is the result of auto-forwarding.
It is a Boolean value.

reply-to

User-specified recipient or recipients who are to receive replies to this message.

replied-to IPM

The Replied-to IPM heading field (C) identifies the IPM to which the present IPM is a reply. It comprises an
IPM identifier.

This conditional field shall be present if, and only if, the IPM is a reply.

Banan Informational [Page 53]

RFC 2524 EMSDP February 1999

Note - In the context of forwarding, care should be taken to distinguish between the forwarding IPM and the
forwarded IPM. This field should identify whichever of these two IPMs to which the reply responds.

subject

The Subject heading field (O) identifies the subject of the IPM. It corresponds to the ”Subject:” field of
RFC-822.

extensions

The Extensions heading field [D no extensions (i.e. members)] conveys information accommodated by no
other heading field. It comprises a Set of zero or more IPMS extensions, each conveying one such information
item.

IPMSExtension ::= SEQUENCE
{

x-header-label AsciiPrintableString,
x-header-value AsciiPrintableString

};

6.2.2 Body part types

The types of body parts that may appear in the Body of an IPM are structured using the MIME specification.

Body ::= SEQUENCE
{

compression-method [0] IMPLICIT CompressionMethod
OPTIONAL,

-- If compression method is not specified,
-- "no-compression" is implied.

message-body OCTET STRING
-- See MIME for structure of the Body.
-- If a compression method is specified, the entire text containing
-- the Content-Type: element followed by the RFC-822 body are
-- compressed using the specified method, and placed herein.

};

CompressionMethod ::= INTEGER
{

-- Compression Methods numbered 0 to 63 are reserved for
-- assignment within this and associated specifications.
no-compression (0),

Banan Informational [Page 54]

RFC 2524 EMSDP February 1999

lempel-ziv (1)

-- Compression Methods numbered between 64 and 127 may be
-- used on a bilaterally-agreed basis between peers.

} (0..127)

7 ACKNOWLEDGMENTS

In the context of Limited Size Messaging (LSM) over CDPD and pACT over Narrowband PCS, AT&T
Wireless Services (AWS), funded work which was relevant to the development of the EMSD protocols.

8 SECURITY CONSIDERATIONS

This protocol supports simple authentication of the originator’s address by the EMSD-SA and simple authen-
tication of EMSD-SA by EMSD-UA.

Mainstream Internet mail security mechanisms can be used in conjunction with the EMSD protocol.

9 AUTHOR’S ADDRESS

Mohsen Banan
Neda Communications, Inc.
17005 SE 31st Place
Bellevue, WA 98008
email: http://mohsen.banan.1.byname.net/ContactMe

A EMSD-P ASN.1 MODULE

This section compiles in one place the complete ASN.1 Module for EM Submission and Delivery Protocol.

EMSD-SubmissionAndDeliveryProtocol DEFINITIONS ::=

BEGIN

EXPORTS EMSDORAddress, AsciiPrintableString, ContentType,
DateTime, EMSDMessageId, EMSDORAddress, ProtocolVersionNumber;

-- Upper bounds

Banan Informational [Page 55]

RFC 2524 EMSDP February 1999

ub-recipients INTEGER ::= 256;
-- also defined in EMSD-InterpersonalMessaging1995
ub-reply-to INTEGER ::= 256;
-- also defined in EMSD-InterpersonalMessaging1995
ub-subject-field INTEGER ::= 128;
-- also defined in EMSD-InterpersonalMessaging1995
ub-password-length INTEGER ::= 16;
ub-content-length INTEGER ::= 65535;
-- also defined in EMSD-Probe
ub-content-types INTEGER ::= 128;
ub-message-id-length INTEGER ::= 127;
ub-total-number-of-segments INTEGER ::= 32;
ub-header-extensions INTEGER ::= 64;
-- also defined in EMSD-InterpersonalMessaging1995
ub-emsd-name-length INTEGER ::= 64;
ub-emsd-address-length INTEGER ::= 20;
ub-rfc822-name-length INTEGER ::= 127;
ub-mime-version-length INTEGER ::= 8;
-- also defined in EMSD-InterpersonalMessaging1995
ub-mime-content-type-length INTEGER ::= 127;
-- also defined in EMSD-InterpersonalMessaging1995
ub-mime-content-id-length INTEGER ::= 127;
-- also defined in EMSD-InterpersonalMessaging1995
ub-mime-content-description-length INTEGER ::= 127;
-- also defined in EMSD-InterpersonalMessaging1995
ub-mime-content-transfer-encoding INTEGER ::= 127;
-- also defined in EMSD-InterpersonalMessaging1995
ub-local-message-nu INTEGER ::= 4096;

-- SUBMIT Operation --

submit ES-OPERATION

ARGUMENT SubmitArgument
RESULT SubmitResult
ERRORS
{

submissionControlViolated,
securityError,
resourceError,
protocolViolation,
messageError

} ::= 33;

SubmitArgument ::= SEQUENCE
{

-- Security features
security [0] IMPLICIT SecurityElement

Banan Informational [Page 56]

RFC 2524 EMSDP February 1999

OPTIONAL,

-- Segmentation features for efficient transport
segment-info SegmentInfo OPTIONAL,

-- Content type of the message
content-type ContentType,

--
-- THE CONTENT --
--

-- The submission content
content ANY DEFINED BY content-type

};

SubmitResult ::= SEQUENCE

{

-- Permanent identifier for this message.
-- Also contains the message submission time.
-- See comment regarding assignment of message
-- identifiers, at the definition of EMSDLocalMessageId.
message-id EMSDLocalMessageId

};

-- Delivery Control Operation --

deliveryControl ES-OPERATION
ARGUMENT DeliveryControlArgument
RESULT DeliveryControlResult
ERRORS
{

securityError,
resourceError,
protocolViolation

} ::= 2;

DeliveryControlArgument ::= SEQUENCE
{

-- Request an addition of or removal of a set of restrictions
restrict [0] IMPLICIT Restrict DEFAULT update,

-- Which operations are to be placed in the restriction set
permissible-operations [1] IMPLICIT Operations OPTIONAL,

-- What maximum content length should be allowed

Banan Informational [Page 57]

RFC 2524 EMSDP February 1999

permissible-max-content-length
[2] IMPLICIT INTEGER

(0..ub-content-length) OPTIONAL,

-- What is the lowest priority message which may be delivered
permissible-lowest-priority

[3] IMPLICIT ENUMERATED
{

non-urgent (0),
normal (1),
urgent (2)

} OPTIONAL,

-- Security features
security [4] IMPLICIT SecurityElement

OPTIONAL,

-- User Feature selection
user-features [5] IMPLICIT OCTET STRING OPTIONAL

};

DeliveryControlResult ::= SEQUENCE
{

-- Operation types queued at the EMSD-SA due to existing
-- restrictions.
waiting-operations [0] IMPLICIT Operations DEFAULT { },

-- Types of messages queued at the EMSD-SA due to
-- existing restrictions
waiting-messages [1] IMPLICIT WaitingMessages DEFAULT { },

-- Content Types of messages queued at the EMSD-SA
waiting-content-types SEQUENCE SIZE (0..ub-content-types) OF

ContentType DEFAULT { }
};

Restrict ::= ENUMERATED
{

update (1),
remove (2)

};

Operations ::= BIT STRING
{

submission (0),
delivery (1)

};

WaitingMessages ::= BIT STRING

Banan Informational [Page 58]

RFC 2524 EMSDP February 1999

{
long-content (0),
low-priority (1)

};

-- Delivery Verify Operation

deliveryVerify ES-OPERATION

ARGUMENT DeliveryVerifyArgument
RESULT DeliveryVerifyResult
ERRORS
{

verifyError,
resourceError,
protocolViolation

} ::= 5;

DeliveryVerifyArgument ::= SEQUENCE
{

-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
message-id EMSDMessageId

};

DeliveryVerifyResult ::= SEQUENCE
{

status DeliveryStatus
};

DeliveryStatus ::= ENUMERATED
{

no-report-is-sent-out (1),
delivery-report-is-sent-out (2),
non-delivery-report-is-sent-out (3)

};

-- DELIVER Operation --

deliver ES-OPERATION
ARGUMENT DeliverArgument
RESULT NULL
ERRORS
{

deliveryControlViolated,
securityError,
resourceError,

Banan Informational [Page 59]

RFC 2524 EMSDP February 1999

protocolViolation,
messageError

} ::= 35;

DeliverArgument ::= SEQUENCE
{

-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
message-id EMSDMessageId,

-- Time the message was delivered to the recipient by EMSD-SA
message-delivery-time DateTime,

-- Time EMSD-SA originally took responsibility for processing
-- of this message. This field shall be omitted if the message-id
-- contains an EMSDLocalMessageId, because that field contains
-- the submission time within it.
message-submission-time [0] IMPLICIT DateTime OPTIONAL,

-- Security features
security [1] IMPLICIT SecurityElement OPTIONAL,

-- SegContentTypementation features for efficient transport
segment-info SegmentInfo OPTIONAL,

-- The type of the content
content-type ContentType,

--
-- THE CONTENT --
--

-- The submitted (and now being delivered) content
content ANY DEFINED BY content-type

};

-- Submission Control Operation

submissionControl ES-OPERATION
ARGUMENT SubmissionControlArgument
RESULT SubmissionControlResult
ERRORS
{

securityError,
resourceError,
protocolViolation

} ::= 4;

SubmissionControlArgument ::= SEQUENCE

Banan Informational [Page 60]

RFC 2524 EMSDP February 1999

{
-- Request an addition of or removal of a set of restrictions
restrict [0] IMPLICIT Restrict DEFAULT update,

-- Which operations are to be placed in the restriction set
permissible-operations [1] IMPLICIT Operations OPTIONAL,

-- What maximum content length should be allowed
permissible-max-content-length

[2] IMPLICIT INTEGER
(0..ub-content-length) OPTIONAL,

-- Security features
security [3] IMPLICIT SecurityElement

OPTIONAL
};

SubmissionControlResult ::= SEQUENCE
{

-- Operation types queued at the EMSD-SA due to existing
-- restrictions.
waiting-operations [0] IMPLICIT Operations DEFAULT { }

};

-- Submission Verify Operation --

submissionVerify ES-OPERATION

ARGUMENT SubmissionVerifyArgument
RESULT SubmissionVerifyResult
ERRORS
{

submissionVerifyError,
resourceError,
protocolViolation

} ::= 6;

SubmissionVerifyArgument ::= SEQUENCE
-- Identifier of this message. This is the same identifier that
-- was provided to the originator in the Submission Result.
-- See comment regarding assignment of message identifiers,
-- at the definition of EMSDMessageId.
{

message-id EMSDMessageId
};

SubmissionVerifyResult ::= SEQUENCE
{

Banan Informational [Page 61]

RFC 2524 EMSDP February 1999

status SubmissionStatus
};

SubmissionStatus::= ENUMERATED
{

send-message (1),
drop-message (2)

};

-- GetConfiguration Operation
-- To be fully defined later. This will possibly include,
-- but not be limited to:
-- get-local-time-zone
-- get-protocol-version
-- etc.

getConfiguration ES-OPERATION

ARGUMENT NULL
RESULT NULL
ERRORS
{

resourceError,
protocolViolation

} ::= 7;

-- SetConfiguration Operation
-- To be fully defined later.

setConfiguration ES-OPERATION

ARGUMENT NULL
RESULT NULL
ERRORS
{

resourceError,
protocolViolation

} ::= 8;

-- Security --

SecurityElement ::= SEQUENCE

{
credentials Credentials,
contentIntegrityCheck ContentIntegrityCheck OPTIONAL

};

Credentials ::= CHOICE
{

simple [0] IMPLICIT SimpleCredentials

Banan Informational [Page 62]

RFC 2524 EMSDP February 1999

-- Strong Credentials are for future study
-- strong [1] IMPLICIT StrongCredentials
-- externalProcedure [2] EXTERNAL

};

SimpleCredentials ::= SEQUENCE

{
eMSDAddress EMSDAddress OPTIONAL,
password [0] IMPLICIT OCTET STRING

(SIZE (0..ub-password-length)) OPTIONAL
};

-- StrongCredentials ::= NULL
-- for now.

-- ContentIntegrityCheck is a 16-bit checksum of content
ContentIntegrityCheck ::= INTEGER (0..65535);

SegmentInfo ::= CHOICE

{
first [APPLICATION 2] IMPLICIT FirstSegment,
other [APPLICATION 3] IMPLICIT OtherSegment

};

FirstSegment ::= SEQUENCE

{
sequence-id INTEGER,
number-of-segments INTEGER
-- number-of-segments must not exceed ub-total-number-of-segments

};

OtherSegment ::= SEQUENCE
{

sequence-id INTEGER,
segment-number INTEGER

};

-- Errors --

protocolVersionNotRecognized ERROR PARAMETER NULL ::= 1;

submissionControlViolated ERROR PARAMETER NULL ::= 2;

messageIdentifierInvalid ERROR PARAMETER NULL ::= 3;

Banan Informational [Page 63]

RFC 2524 EMSDP February 1999

securityError ERROR PARAMETER security-problem SecurityProblem ::= 4;

deliveryControlViolated ERROR PARAMETER NULL ::= 5;

resourceError ERROR PARAMETER NULL ::= 6;

protocolViolation ERROR PARAMETER NULL ::= 7;

messageError ERROR PARAMETER NULL ::= 8;

SecurityProblem ::= INTEGER (0..127);

--
-- EXPORTED Definitions (for use by associated specifications) --
--

ContentType ::= INTEGER
{

-- Content type 0 is reserved and shall never be transmitted.
reserved (0),
-- Content types between 1 and 31 (inclusive) are for
-- internal-use only
probe (1), -- reserved
delivery-report (2), -- reserved

-- Content types between 32 and 63 (inclusive) are for
-- message types defined within this specifications.
emsd-interpersonal-messaging-1995 (32),
voice-messaging (33) -- reserved

-- Content types beyond and including 64 are for
-- bilaterally-agreed use between peers.

} (0..127);

-- If this message was originated as an RFC-822 message, then this
-- EMSDMessageId shall be the "Message-Id:" field from that message.
-- If this message was originated within the EMSD domain,
-- then this identifier shall be unique for the Message Center
-- generating this id.

EMSDMessageId ::= CHOICE
{

emsdLocalMessageId [APPLICATION 4] IMPLICIT
EMSDLocalMessageId,

rfc822MessageId [APPLICATION 5] IMPLICIT
AsciiPrintableString
(SIZE (0..ub-message-id-length))

};

Banan Informational [Page 64]

RFC 2524 EMSDP February 1999

EMSDLocalMessageId ::= SEQUENCE
{

submissionTime DateTime,
messageNumber INTEGER (0..ub-local-message-nu)

};

-- An Originator/Recipient Address in EMSD Environment

EMSDORAddress ::= CHOICE
{

-- This is the local-format address
emsd-local-address-format EMSDAddress,

-- This is a globally-unique RFC-822 Address
rfc822DomainAddress AsciiPrintableString

};

EMSDAddress ::= SEQUENCE
{

emsd-address OCTET STRING
(SIZE (1..ub-emsd-address-length)),

-- emsd-address is a decimal integer in BCD (Binary Encoded Decimal)
-- format.
-- If it had an odd number of digits, it is padded with 0 on
-- the left.

emsd-name [0] IMPLICIT OCTET STRING
(SIZE (0..ub-emsd-name-length))
OPTIONAL

};

DateTime ::= INTEGER;

Iso8859String ::= GeneralString;

AsciiPrintableString ::= [APPLICATION 0]
IMPLICIT Iso8859String (FROM

(" "|"!"|"#"|"$"|"%"|"&"|"’"|"("|")"|"*"|"+"|","|"-"|"."|"/"|
"0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|":"|";"|"<"|"="|">"|
"?"|"@"|"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|"K"|"L"|"M"|
"N"|"O"|"P"|"Q"|"R"|"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"|"["|"]"|
"ˆ"|"_"|"‘"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|"k"|"l"|
"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|"u"|"v"|"w"|"x"|"y"|"z"|"{"|
"|"|"}"|"˜"|"\"|""""));

Banan Informational [Page 65]

RFC 2524 EMSDP February 1999

ProtocolVersionNumber ::= [APPLICATION 1] SEQUENCE
{

version-major INTEGER,
version-minor [0] IMPLICIT INTEGER DEFAULT 0

}
END -- end of EMSD-SubmissionAndDeliveryProtocol

B EMSD-IPM ASN.1 MODULE

This section compiles in one place the complete ASN.1 Module for EMSD-IPM.

EMSD-InterpersonalMessaging1995 DEFINITIONS ::=

BEGIN

IMPORTS EMSDORAddress, EMSDMessageId, AsciiPrintableString
FROM EMSD-SubmissionAndDeliveryProtocol;

ub-recipients INTEGER ::= 256;
ub-reply-to INTEGER ::= 256;
ub-subject-field INTEGER ::= 128;
ub-header-extensions INTEGER ::= 64;
ub-emsd-name-length INTEGER ::= 64;
ub-mime-version-length INTEGER ::= 8;
ub-mime-content-type-length INTEGER ::= 127;
ub-mime-content-id-length INTEGER ::= 127;
ub-mime-content-description-length INTEGER ::= 127;
ub-mime-content-transfer-encoding INTEGER ::= 127;

IPM ::= SEQUENCE
{

heading Heading,
body Body OPTIONAL

};

Heading ::= SEQUENCE
{

-- Address of the sending agent (person, program, machine) of
-- this message. This field is mandatory if the sender
-- is different than the originator.
sender [0] EMSDORAddress OPTIONAL,

-- Address of the originator of the message
-- (not necessarily the sender)
originator EMSDORAddress,

Banan Informational [Page 66]

RFC 2524 EMSDP February 1999

-- List of recipients and flags associated with each.
recipient-data SEQUENCE SIZE (1..ub-recipients)

OF PerRecipientFields,

-- Flags applying to this entire message
per-message-flags [1] IMPLICIT BIT STRING

{
-- Priority values
-- At most one of "non-urgent" and "urgent" may be specified
-- concurrently. If neither is specified, then a Priority
-- level of "normal" is assumed.
priority-non-urgent (0),
priority-urgent (1),

-- Importance values
-- At most one of "low" and "high" may be specified
-- concurrently. If neither is specified, then an
-- Importance level of "normal" is assumed.
importance-low (2),
importance-high (3),

-- Indication of whether this message has been automatically
-- forwarded
auto-forwarded (4)

} OPTIONAL,

-- User-specified recipient who is to receive replies to this
-- message.
reply-to [2] IMPLICIT SEQUENCE SIZE

(1..ub-reply-to)
OF EMSDORAddress OPTIONAL,

-- Identifier of a previous message, for which this message
-- is a reply
replied-to-IPM EMSDMessageId OPTIONAL,

-- Subject of the message.
subject [3] IMPLICIT AsciiPrintableString

(SIZE (0..ub-subject-field))
OPTIONAL,

-- RFC-822 header fields not explicitly provided for in
-- this Heading. For messages incoming from the external
-- world (i.e. in RFC-822 format), the Message-Id: field
-- need not go here, as it is placed in the
-- Envelope’s EMSDMessageId (message-id) field.
extensions [4] IMPLICIT SEQUENCE

(SIZE (0..ub-header-extensions))
OF IPMSExtension OPTIONAL,

Banan Informational [Page 67]

RFC 2524 EMSDP February 1999

-- MIME Version (if other than 1.0)
mime-version [5] IMPLICIT AsciiPrintableString

(SIZE
(0..ub-mime-version-length))

OPTIONAL,

-- Top-level MIME Content Type
mime-content-type [6] IMPLICIT AsciiPrintableString

(SIZE (0..
ub-mime-content-type-length))

OPTIONAL,

-- MIME Content Id
mime-content-id [7] IMPLICIT AsciiPrintableString

(SIZE (0..
ub-mime-content-id-length))

OPTIONAL,

-- MIME Content Description
mime-content-description [8] IMPLICIT AsciiPrintableString

(SIZE (0..
ub-mime-content-description-length))

OPTIONAL,

-- Top-level MIME Content Type
mime-content-transfer-encoding

[9] IMPLICIT AsciiPrintableString
(SIZE (0..ub-mime-content-transfer-encoding))

OPTIONAL
};

PerRecipientFields ::= SEQUENCE
{

recipient-address EMSDORAddress,
per-recipient-flags BIT STRING

{
-- Recipient Types.
-- At most one of "copy" and "blind-copy" may be
-- specified concurrently for a single recipient. If
-- neither is specified, than the recipient
-- is assumed to be a "primary" recipient.
recipient-type-copy (0),
recipient-type-blind-copy (1),

-- Notification Request Types.
-- Only one of "rn" and "nrn" may be specified
-- concurrently, \\x110011 for a single recipient.
-- "rn" implies "nrn" in addition.
notification-request-rn (2),

Banan Informational [Page 68]

RFC 2524 EMSDP February 1999

notification-request-nrn (3),
notification-request-ipm-return (4),

-- Report Request Types
-- At most one of these should be set for a
-- particular recipient. "delivery" implies "non-delivery"
-- in addition.
report-request-non-delivery (5),
report-request-delivery (6),

-- Originator-to-Recipient request for a reply.
reply-requested (7)

} DEFAULT { report-request-non-delivery }

};

IPMSExtension ::= SEQUENCE
{

x-header-label AsciiPrintableString,
x-header-value AsciiPrintableString

};

Body ::= SEQUENCE
{

compression-method [0] IMPLICIT CompressionMethod
OPTIONAL,

-- If compression method is not specified,
-- "no-compression" is implied.

message-body OCTET STRING
-- See MIME for structure of the Body.
-- If a compression method is specified, the entire text containing
-- the Content-Type: element followed by the RFC-822 body are
-- compressed using the specified method, and placed herein.

};

CompressionMethod ::= INTEGER
{

-- Compression Methods numbered 0 to 63 are reserved for
-- assignment within this and associated specifications.
no-compression (0),
lempel-ziv (1)

-- Compression Methods numbered between 64 and 127 may be
-- used on a bilaterally-agreed basis between peers.

} (0..127)

END -- end of EMSD-InterpersonalMessaging1995

Banan Informational [Page 69]

RFC 2524 EMSDP February 1999

C RATIONALE FOR KEY DESIGN DECISIONS

This section summarizes the rationale behind key design decisions that were made while developing the
EMSD Protocols.

C.1 Deviation From The SMTP Model

SMTP is the main mail transport mechanism throughout the Internet. SMTP is widely deployed and well
understood by many engineers who specialize in Internet email. Because of these reasons, works based on
SMTP or derived from it have a higher likelyhood of being widely deployed throughout the Internet.

However, SMTP is highly inefficient for transfer of short messages. SMTP’s inefficiency applies to both the
number of transmissions and also to the number of bytes transmitted.

Even when fully optimized with PIPELINING, SMTP is still quite inefficient.

Submission of a short message with SMTP involves 15 transmissions. Submission of a short message with
SMTP and PIPELINING involves 9 transmissions. Submission of a short message with EMSD (EMSD-P
and ESRO) involves 3 transmissions (in typical cases).

The key requirement driving the design of EMSD is efficiency. It was determined that the at least 3 fold gains
in efficiency justifies the deviation from the SMTP model.

C.1.1 Comparison of SMTP and EMSD Efficiency

The table below illustrates the number of N-PDUs exchanged for transfer of a short Internet email when using
SMTP, SMTP and PIPELINING, QMTP and EMSD. The names used for identifying the PDUs are informal
names.

SMTP SMTP + pipelining QMTP, QMQP, EMSD
------- ----------------- ------------ -----------

client: SYN SYN SYN Submit.Req
server: SYN ok SYN ok SYN Submit.Resp
client: HELO EHLO message ack
server: ok PIPELINING accept close
client: MAIL MAIL RCPT DATA close
server: ok ok
client: RCPT message QUIT
server: ok accept ok close
client: DATA close
server: ok
client: message
server: accept
client: QUIT
server: ok close

Banan Informational [Page 70]

RFC 2524 EMSDP February 1999

client: close

C.2 Use of ESRO Instead of TCP

In order to provide the same level of reliability that the existing email protocols provide for short messages,
it is clear that a reliable underlying service is needed. UDP [6], by itself, is clearly not adequate.

Use of TCP however, involves three phases:

1. Connection Establishment

2. Data Transfer

3. Disconnect

Reliable transfer of a short message using TCP at a minimum involves 5 transmissions as it is the case with
QMTP.

The key requirement driving the design of EMSD is Efficiency. It was determined that elimination of the
extra 2 transmissions that are an inherent characteristic of TCP, justifies deviation from it.

ESRO protocol, as specified in (RFC-2188 [1]), provides reliable connectionless remote operation services
on top of UDP [6] with minimum overhead. ESRO protocol supports segmentation and reassembly, concate-
nation and separation.

Reliable transfer of a short message using ESRO involves 3 transmissions as it is the case with EMSD-P.

C.3 Use Of Remote Procedure Call (RPC) Model

Many Internet protocols are ”text-based”. Few Internet protocols are RPC based. Protocols designed around
the ”text-based” approach have a better track record of acceptance throughout the Internet.

Considering that message submission and delivery in EMSD involve no more than two data exchanges, the
text-based model becomes the same as an operation. Furthermore, the RPC model is the natural way of using
ESRO.

C.4 Use Of ASN.1

In order to minimize the number of bytes transferred, efficient encoding mechanisms are needed.

Amongst today’s encoding mechanisms, ASN.1 has the unique feature of separating the abstract syntax from
the encoding rules. By selecting ASN.1 as the notation used for expressing EMSD’s information objects,
EMSD has the flexibility of using the most efficient encoding rules such as Packed Encoding Rules (PER)
when they are available.

Banan Informational [Page 71]

RFC 2524 EMSDP February 1999

Efficient encoding can always be better performed when the syntax of the information is known. In general,
encoding and compression techniques which use the knowledge of the syntax of the information produce
better results than those compression techniques that work on arbitrary text.

D FURTHER DEVELOPMENT

Beyond this documentation of existing implementations, further development of EMSD protocol is antici-
pated.

The following deficiencies and areas of improvement are identified.

• Mapping of RFC-822 to EMSD-FS needs to be more explicit.

• Mapping of EMSD-FS to RFC-822 needs to be more explicit.

• Text of duplicate detection section needs more structure.

• SubmissionControl operation needs more informative description.

• Based on implementor’s feedback the ”EMSD PROCEDURE FOR OPERATIONS” section needs to
be adjusted or re-done.

• The EMSD protocol can be extended to also support transfer of raw RFC-822 text-based messages in
addition to EMSD-FS. This would be a trade-off in favor of ”ease of implementation” against ”effi-
ciency of bytes transfered”.

• Provide mechanisms to support fully automated initial provisioning of mail-boxes.

Future development of the EMSD Protocol is anticipated to take place at http://www.emsd.org/. Those in-
terested in further development and maintenance of this protocol are invited to join the various mailing lists
hosted at http://www.emsd.org/.

References

[1] M. Banan, M. Taylor, and J. Cheng. AT&T/Neda’s Efficient Short Remote Operations (ESRO) Protocol
Specification Version 1.2. RFC 2188 (Informational), September 1997.

[2] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current
Practice), March 1997.

[3] D. Crocker. STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES. RFC 822
(Standard), August 1982. Obsoleted by RFC 2822, updated by RFCs 1123, 2156, 1327, 1138, 1148.

[4] Information Processing — Open Systems Interconnection — Specification of Packed Encoding Rules for
Abstract Syntax Notation One (ASN.1). International Organization for Standardization and International
Electrotechnical Committee. International Standard 8825-2.

Banan Informational [Page 72]

RFC 2524 EMSDP February 1999

[5] Information Processing — Open Systems Interconnection — Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1). International Organization for Standardization and International
Electrotechnical Committee, 1987. International Standard 8825.

[6] Jon B. Postel. User Datagram Protocol. Request for Comments 768, DDN Network Information Center,
SRI International, August 1980.

Banan Informational [Page 73]

	PRELIMINARIES
	Internet Mail Submission and Delivery
	Relationship Of EMSD To Other Mail Protocols
	EMSD Requirements and Goals
	Anticipated Uses Of EMSD
	Definitions of Terms Used in this Specification
	Conventions Used In This Specification
	About This Specification

	EFFICIENT MAIL SUBMISSION AND DELIVERY OVERVIEW
	EFFICIENT MAIL SUBMISSION AND DELIVERY PROTOCOL
	Use Of Lower Layers
	Use of ESROS
	Use Of UDP
	Encoding Rules
	Presentation Context

	EMSD-UA Invoked Operations
	submit
	deliveryControl
	deliveryVerify

	EMSD-SA Invoked Operations
	deliver
	submissionControl
	submissionVerify

	EMSD Common Information Objects
	SecurityElements
	Message Segmentation and Reassembly
	Common Errors
	ContentType
	EMSDMessageId
	EMSDORAddress
	EMSDAddress
	DateTime
	AsciiPrintableString
	ProtocolVersionNumber

	Submission and Delivery Procedures

	DUPLICATE OPERATION DETECTION SUPPORT
	Duplicate Operation Detection Support Overview
	Operation Value
	Operation Instance Identifier

	EMSD PROCEDURE FOR OPERATIONS
	MTS Behavior
	MTS Performer
	Message-submission
	Delivery-control
	Delivery-verify
	MTS Invoker

	UA Behavior
	UA Performer
	UA Invoker

	EMSD FORMAT STANDARDS
	Format Standard Overview
	Interpersonal Messages
	Heading fields
	Body part types

	ACKNOWLEDGMENTS
	SECURITY CONSIDERATIONS
	AUTHOR'S ADDRESS
	EMSD-P ASN.1 MODULE
	EMSD-IPM ASN.1 MODULE
	RATIONALE FOR KEY DESIGN DECISIONS
	Deviation From The SMTP Model
	Comparison of SMTP and EMSD Efficiency

	Use of ESRO Instead of TCP
	Use Of Remote Procedure Call (RPC) Model
	Use Of ASN.1

	FURTHER DEVELOPMENT

