
Neda’s Implementation of
EMSD-UA – Source

Neda Document Number: 105-101-08

Last Updated: Author unspecified

Doc. Revision: source unspecified

Neda Communications, Inc.

1996

2

Preface

Who to contact
For more information about this document or its contents, please contact:
Neda Communications, Inc.
Phone: +1 425 644-8026
Fax: +1 1 425 562-9591
E-Mail: info@neda.com

3

4

Contents

1 Introduction 7

1.1 About This Document . 7

1.2 Overview of Architecture . 7

2 EMSD-UA Architecture 9

2.1 Overview . 9

2.2 The User Agent Core . 9

2.2.1 To process or Preprocess, that is the question 11

2.2.2 Submission . 12

2.2.3 Delivery . 12

2.2.4 Duplicate Detection . 12

2.2.5 Finite State Machines . 13

2.3 The User Agent Shell . 14

A Bibliography 15

B Trace Bit Definitions 17

5

6 CONTENTS

Chapter 1

Introduction

1.1 About This Document

This document is available in PDF, Postscript, and HTML format.

1.2 Overview of Architecture

Figure 1.1 illustrate the high level software architecture for this product (EMSD-UA-
Source)

7

8 CHAPTER 1. INTRODUCTION

+---------+ +---------+ +---------+
pine-lsm		pager-emu		combined
+---------+ +---------+ +---------+

ˆ ˆ ˆ
| | |
+-------------+ | +-------------+

| | |
v v v

+---------+
| |
| UA-CORE |
| |
+---------+

ˆ
|
|
|
v

+---------+
| |
| ESROS |
| |
+---------+

Figure 1.1: Overview of Architecture

Chapter 2

EMSD-UA Architecture

2.1 Overview

The EMSD User Agent is composed of a number of cooperating modules. Some mod-
ules cooperate by one module calling functions in another module as needed. Other
modules cooperate via a call-back methodology where functions in one module are
registered with another module, so that when a particular event or action occurs, the
registered function will be called.

Figure 2.1 shows the relationship of the primary modules associated with the UA.
Note that the modules with which the UA directly cooperates may, themselves, inter-
act with other modules, but those other modules and interactions are not necessarily
depicted here.

The User Agent Core implements the EMSD protocol, and maintains the state
machines required for the operation thereof. The User Agent Shell implements the
specifics of how messages retrieved from, and provided to, the user interface (i.e. it
implements its own user interface, obtains spooled files created by a Pine UA, etc.).

2.2 The User Agent Core

The User Agent Core uses, as its module descriptor, ”UA”. Per the Neda coding stan-
dards, functions which are intended to be called from outside of the module use an
uppercase module descriptor. The first function to be called is UA init(), found in
file ”uacore/ua.c”. UA init() receives many parameters. The documentation in ”ua.h”

9

10 CHAPTER 2. EMSD-UA ARCHITECTURE

+--+
| |
| v and ˆ = function call interface |
| |
| v . = call-back interface through registered functions |
| . and ˆ |
| |
| +---------------------------------------+ +---------+ |
	User Agent Shell	>>>>>>>>>>>>>	SCH	
+---------------------------------------+ +---------+				
v .				
v ˆ +---------+				
v .				
v Submission ˆ Delivery				
v and other . and other >>>>>>	ASN			
v requests ˆ events ˆ				
v . ˆ				
v ˆ ˆ +---------+				
v . ˆ				
+---------------------------------------+ ˆ +---------+				
		>>>>>>>ˆ		
	User Agent Core	>>>>>>>>>>>>>	FSM	
		>>>>>>>v		
+---------------------------------------+ v +---------+				
v ˆ v				
v . v +---------+				
v ˆ v				
v . v				
v ˆ >>>>>>	NVM			
v InvokeRequest, . InvokeIndication,				
v ResultRequest ˆ ResultIndication,				
v etc. . ResultConfirm +---------+				
v ˆ etc.				
v .				
v ˆ				
v .				
v ˆ				
+---------------------------------------+				
	ESROS			
+---------------------------------------+				
+--+

Figure 2.1: Relationship of Primary UA Modules

2.2. THE USER AGENT CORE 11

describes each of them, so they won’t be explicitly explained here.

In the course of processing the UA Core initialization code, the following signifi-
cant actions take place:

• The pointers to the call-back functions are saved

• The password string is copied so that the caller need not maintain a permanent
copy of it

• A trace handle for the UA Core module is generated

• The UA Core uses non-volatile memory to maintain both Submission Verify in-
formation and Duplicate Detection information. At initialization time, the non-
volatile memory is examined to see if it has been set up properly to maintain
these information types. If not, then appropriate setup is accomplished, involv-
ing creating NVM transactions, allocating memory as part of the transaction,
initializing portions of the allocated memory including queue pointers, and end-
ing the NVM transactions.

• ASN-compile the parse trees for each of the EMSD protocol elements.

• Bind to ESROS Service Access Points so that messages can be sent and received
via the EMSD protocol. Binding the ESROS SAP’s also provides pointers to
call-back functions within the UA Core, which ESROS calls when Indications
and Confirmations are received.

• Initialize the finite state machines used to implement the EMSD protocol, allow-
ing multiple concurrent operations.

2.2.1 To process or Preprocess, that is the question

Preprocessing is done on all events incoming to the UA Core module, regardless of
whether those events originate at the UA Shell level, or at the ESROS level. The
type of preprocessing, however, differs depending on the event being processed. The
preprocessing functions are found in file ”uacore/upreproc.c”.

Preprocessing of events from ESROS involve parsing the incoming PDU, and either
associating the event with an existing operation, or allocating a new operation structure
for the operation. Also associated with each operation is a finite state machine, a pointer
to which is maintained in the operation structure.

Submission requests require a slightly different type of preprocessing. With this
event type, the message is converted to the internal format required of the ASN format-
ter, a PDU is formatted, and an operation and finite state machine are allocated.

12 CHAPTER 2. EMSD-UA ARCHITECTURE

2.2.2 Submission

When the UA Shell has messages for submission, it calls the function UA submitMessage(),
in file ”uacore/ua.c”. This function preprocesses the request and then generates an event
to the finite state machine to process the request. The finite state machine handles the
remainder of the message submission. See the section entitled ”Finite State Machines”.
Once the event has been generated to the finite state machine, the submission function
returns to its UA Shell caller. The finite state machine is run via the SCH scheduler
module, from the main loop in the UA Shell main() function.

2.2.3 Delivery

Events from ESROS invoke call-back functions (registered by UA init()) which are
located in the file ”uacore/lsroevt.c”. When an INVOKE.indication arrives from ES-
ROS, the function ua invokeIndication() is called. The first step of processing the
INVOKE.indication is to determine whether the invoking operation is a duplicate of a
previous operation. The mechanism of this determination is described in the section
”Duplicate Detection”. If this operation is a duplicate, a RESULT.request is sent back,
just as if the operation had actually been accomplished – since, in reality, the operation
was accomplished by the original PDU for which this is a duplicate. The PDU is then
discarded, and no further processing occurs.

Assuming that the PDU is not a duplicate, it is preprocessed (see above). Since the
preprocessing provides an operation structure and a finite state machine for this opera-
tion, an event can now be generated to the finite state machine, for further processing
of this operation. Once the event has been generated to the finite state machine, the
call-back function returns to its ESROS caller. The finite state machine is run via the
SCH scheduler module, from the main loop in the UA Shell main() function.

2.2.4 Duplicate Detection

The code to implement duplicate detection is found in the file ”uacore/uadup.c”.

When a DELIVER.request is to be sent, the function ua addDuplicateDetection() is
called, to add a duplicate detection octet. The value of this octet is simply incremented
by one with each successive call.

Whenever a PDU is received from ESROS, it is checked to determine if the re-
quested operation is a duplicate of a prior request. If it is, the request must be ignored.
The function ua isduplicate() is called to accomplish this checking.

2.2. THE USER AGENT CORE 13

2.2.5 Finite State Machines

The finite state machines for the UA performer are found in the file ”uacore/uperform.c”.
The finite state machine is pictorially depicted at the top of this file, and an understand-
ing of this graphic is essential to comprehension of the workings of the FSM.

The finite state machines for the UA invoker are found in the file ”uacore/submit.c”.
Again, the finite state machine is pictorially depicted at the top of this file, and an
understanding of this graphic is essential to comprehension of the workings of the
FSM.

Function names within these files are chosen to indicate clearly the purpose and
time-of-use of the functions. Most of the functions are of two types: Predicate or
Action. A predicate is used to determine whether a particular transition between states
is to occur. Once a predicate function returns TRUE, the associated action function is
called to process the state transition. Predicates and Actions are associated with the
state in which an event occurs, and with the resulting state following the transition. In
order to allow for multiple possible transitions between the same two states, a single
letter suffix is used.

As an example of function naming, take the transition, in ”uacore/submit.c”, from
the the Invoke Response Wait state, State 2, to the Idle state, State 1, as a result of re-
ceiving a RESULT indication. This is shown in the graphic as an arrow going from the
State 2 box to the State 1 box, with the designator [A]. The predicate, for determining
if this transition is to be taken, is therefore called pS2S1a():

p = Predicate S2 = Starting state is S2 S1 = Ending state is S1 a = Of the possible
transitions from S2 to S1, this is [A]

Note that if there is only one possible transition from a given state, for a particular
event, a predicate function is not required. Predicate functions are only required when
the same event could result in two different possible transitions, and it is the job of the
predicate function to determine whether a transition should be taken.

Processing of events in the finite state machine occur through scheduling accom-
plished by the SCH scheduler module. When an event is generated to the finite state
machine, by a call to FSM generateEvent(), the finite state machine is placed on the
scheduler queue to be run. When the scheduler runs this task, the predicate and action
functions appropriate to the event and operation data are processed. (In some cases,
this means that the registered call-back functions in the UA Shell are called.)

14 CHAPTER 2. EMSD-UA ARCHITECTURE

2.3 The User Agent Shell

It is recommended that the reader refer to ”mts ua/include/ua.h” for a detailed descrip-
tion of the interface that the User Agent Core module requires of the User Agent Shell.
In particular, the documentation of the UA init() function describes each of the call-
back functions which the UA Shell must implement, and the parameters of each; and
the documentation of UA submitMessage() which the UA Shell must call to submit
a message to the UA Core. From this information, it should be obvious what a User
Agent Shell must do to send and receive messages using the facilities of the User Agent
Core.

Appendix A

Bibliography

[103-100-14] OPEN C Platform, 1995 Neda Communications, Inc.

[4] Neda Communications, Inc., ”Limited Size Remote Operations: Protocol Im-
plementation Conformance Statement”.

Banan, et.al., ”Efficient Short Remote Operations”, RFC 2188, Neda Communica-
tions Inc, September 1997.

15

16 APPENDIX A. BIBLIOGRAPHY

Appendix B

Trace Bit Definitions

Module Name Trace Bit Mask (hex) Type of Tracing
??? 0 0001 ????

1 Set all level of tracing
??? 0 0001

5 0020
6 0040
10 0400

461

Table B.1: Complete List of Trace Bit Definitions

17

	Introduction
	About This Document
	Overview of Architecture

	EMSD-UA Architecture
	Overview
	The User Agent Core
	To process or Preprocess, that is the question
	Submission
	Delivery
	Duplicate Detection
	Finite State Machines

	The User Agent Shell

	Bibliography
	Trace Bit Definitions

