Neda’s Implementation of
ESRO - Source

Documentation Applies for:
ESRO-FULL-SRC
ESRO-BASE-SRC
ESRO-TEST-SRC

Neda Document Number: 105-102-06
Last Updated: Author unspecified

Doc. Revision: source unspecified

Neda Communications, Inc.

January 27, 1999

Contents

1 Introduction 15
1.1 About This Product e e e 15
1.2 About ThisDocument. e e e e e e e 15
1.3 Architecture e e e e e e e e e e 16
1.4 Overview of Software e 16

141 Getting the SOUTCES v v i i e i e e e e e e e e e e e e e e e e e e 17
1.4.2 Compiling and Building the Software 17

2 ESRO Protocol Engine 19
2.1 IntroduCtion i e e e e e e e e e e 19
2.2 Overview and Concepts i e e e 19

2.2.1 ESROP Service Features 19

2.2.2 Software Architecture e e e e 19
2221 UpperlInterface 21

2222 LowerlInterface 21

2.2.2.3 Timer and Data Unit Management Interface 21

2.2.24 Network Management Interface 21

2.3 ESRO Service Primitives e 21
2.3.1 SAPManagement it e 22

2.3.2 OperationInvocation L L e e 22

2.4 Upper Interface Functions e 24
2.4.1 SAPManagementttt e 24
2.4.1.1 Bindan ESROP-User it ettt 24

2.4.1.2 Unbindan ESROP-User ittt e 25

2.4.2 ESROP Action Primitives e e e 25
24.2.1 ESROS-INVOKE.request ot i ittt ettt 25

2.4.22 ESROS-RESULT.request oo i ittt e e e et e 26

2423 ESROS-ERROR.request o v i i it et e e e e e e e 26

2.4.3 ESROS Event Primitives e e e 26
2.4.3.1 ESROS-INVOKE.indication 26

2.4.3.2 ESROS-RESULT.ndicationt i ittt it 27

2.4.3.3 ESROS-ERROR.indication o 27

2.4.3.4 ESROS-FAILURE.indication0.... 27

2.4.3.5 ESROS-RESULT.confirm i 28

2.43.6 ESROS-ERROR.confirm 28

2.5 Lower Interface Functions e e e e e 28
2.5.1 Connectionless interface e e e 28
2.5.1.1 UDPSAPBIind e e 28

2.5.1.2 UDPSAPUnbind e 29

4 CONTENTS
2.5.2 Action Primitives e e e e e e e e e e 29
2.5.3 Event Primitives e 29
2.6 Environment Interface L 29
2.6.1 DataUnit Management o v v v v vt e e e e e e e e e e e e e e e e e 29
2.6.2 Timer Management L e e e e e e e e 30
2.7 Network Management e e e 30
2.8 Portation NOteS o v v e e e e e e e e e e e e e e e 30
2.8.1 Unresolved Symbols 30
2.8.2 Configuration e e e e e e e e e e e e 30
2.83 Tracing o e e e e e 30
2.8.4 Differences Between Unix and MS-DOS/Windows Portations 30
2.8.4.1 Multiple Processes vs. Single Process 32
2.8.4.2 Libraries used building MS-DOS ESROS user application in one process with Call-
back APL e e e 32
2.84.3 Scheduler Module (SCH_) i 32
2.84.4 Timer Module (TMR.) e i e 33
2.84.5 FLEX&BISON e e e e e 33
29 Design OVEIVIEW v v v vt ittt et e e e e e e e e e e 33
2.9.1 SAPManagement it e e e e e e e e e e e e e e e 34
2.9.2 ESROP Finite State Machine e 34
2921 Events e e e e e e 34
2.9.22 EventProcessor e e e e e 36
2.9.2.3 State Information L. e e e e e 36
2.93 ESROSTIMErS o o ittt e e e e e e e e e e e e e e e 37
294 ESROPPDUParser et e et e e e e 37
2.9.5 ESROPPDUFormatter it et et e e e e e e 37
2.9.6 OperationInvocation L. oL e 37
2.9.6.1 Invoker ESROP-Provider 37
2.9.6.2 Performer ESROP-Provider 38
3 ESRO API 41
3.1 ESROS With Function Call APT e 41
3.1.1 Initialize the Parameters i 0 i e e e e e e e e e e 41
3.1.2 Activate ESROS Service AccessPoint 41
3.1.3 Deactivate ESROS Service AccessPoint., 42
3.1.4 ESROS Invoke Service Request 42
3.1.5 ESROS Result Service Request L o 43
3.1.6 ESROS Error Service Request e e 43
3,17 Getanevent e e e e e e e e 44
3.1.8 Sample Code e 44
3181 InVOKEr.C e e e e e e e e e e 44
3.1.8.2 performerC. Lo e 45
3.2 ESROS With Callback API e e e e e e 45
3.2.1 Initialize the Parameters e e e e e e e e e e e 45
3.2.2 Activate ESROS Service AccessPoint 45
3.2.3 Deactivate ESROS Service AccessPoint., 47
3.2.4 ESROS Invoke Service Request e 48
3.2.5 ESROS Result Service Request e 48
3.2.6 ESROS Error Service Request e 49
327 SampleCode e e 49

3.277.1 dnvoksch.c e 49

CONTENTS 5

32772 perfsch.c e e e 49

4 ESROS Programs 51
4.1 Introduction e e e e e e e 51
4.2 Providers and Users - Unix vs. MS-DOS/Windows 51
421 UNIX ..o e e e 51
422 MS-DOS/WIndows e e e e 51

4.3 The ESROS Service Provider e e e e e e 53
431 UNIX .. o e e 53
43.1.1 Runningesrosunder Unix 53

432 MS-DOS/WIndows e e e e e e e e e 54

4.4 Service User Programs L e 54
441 opsxmpl ... e 54
44011 UniX . ..t e e e e e e e e e e e 54

4412 MS-DOS/WIindows e e 54

442 SIESS . . i i e e e e e e e e e e e e e e e 55
4421 UniX . ..ot o e e e e e e e e e e e 55

4422 MS-DOS/WIindows e 55

443 TeSter o e e e e e e e e e 55
4431 UniX . ..t e e e e e e e e 55

4432 MS-DOS/WIindows e 55

4.5 Support Programs L e 55
451 BSTOPSCOP « v v v v e 55

4.6 Running the Test Programs e 56
4.6.1 UNIX . . .o e e e e 56
4.6.1.1 opscxmpl . . .o e e e e e e 56

4.6.1.2 SIIESS . . . i i e e e e e e e e 56

4.6.1.3 @SIOSST & v v v e e e e e e e e e e e e e e e 56

4.6.2 MS-DOS/WIndows o e e e e e e e 57
4.6.2.1 ©SIOS . . v i e e e e e e e e e e e e e e e e 57

4.62.2 opsxmpl . .o e e e e e 57

4.6.2.3 SHESS . & v o e e e e e e e e e e e e e e e e e e 57

4.6.2.4 teSIEI e e e e e e e e e e e e e e e e e e 57

477 SeNnarios i e e e e e e e e e e e 57
4.7.1 Logging-Related Commands 0 i i e e 57
4701 108 - oo e 58

47.1.2 logfile e e e e 58

47713 qUiet . . . e e e e e e e e e e 58

47.1.4 verbose e e e e e e e 58

4.7.2 Invocation-Related Commands e 58
4721 AnVOKE TeqUESt v o i e e e e e e e e e e e e e e 58

4722 invokeindication L L L 59

4.7.3 Result-Related Commands e e e e 60
47731 resultrequest. e e e e e e e e e e 60

4732 resultindication L 60

4733 resultconfirmation. e 60

474 Error-Related Commands e e e e e 61
4741 errorrequest i e e e e e e e e e e e e e e e e e 61

47742 errorindication L L. e e e e e e 61

4743 errorconfirmation e e e e e e 62

475 General Commands e e e e e e e e 62

CONTENTS

4775.1 sapbind e e e e 62

47752 saprelease e e e e 63

47753 Aailureindication oL oL e e e 63

4754 1awevent e e e e e e e e e e e e 63

4755 delay e 64

4.7.6 Scenario File Manipulation Commands 64
4.7.6.1 includeo e e 64

4762 path e e 64

4.8 Tracingo e e e e e e e e 65
4.8.1 OCP Trace Module Tracing o 0 v i e e e e e e e e e e 65
48.1.1 RunTimeControlof TM_ e 65

48.1.2 TMOUPUL oo e e e e e e e e e e 65

4.8.2 PDU Transaction Logging o 0 i i i e e e e e 66
4.8.2.1 PDU Transaction Log Display 66

4.9 Implementation NOtes o e e 66
4.9.1 Differences Between Unix and MS-DOS Portations 66
4.9.1.1 Multiple Processes vs. Single Process 66

49.1.2 Scheduler Module (SCH_) i e 67

49.1.3 Timer Module (TMR.) e 67

49.14 FLEX&BISON e 67

ESROS Testing 69
5.1 Conformance and Interconnection Testing Overview, 69
5.2 Abstract Test Methods L 69
521 WhatIsan ATM? L 0 o e e e e 70
5.2.1.1 The ATM/ATS Relationship 70

5.2.1.2 Applicability 70

5.22 Remote Test Method o e 70

5.2.3 Coordinated Test Method L 72

5.24 Distributed Test Method L 73

5.2.5 Local Test Method e 74

5.3 The ESROS Test Tools o o o i i e e e e e e 75
5.3.1 Howthe Test Tools Work 75

54 TestObjJectives v o v v i e e e e e e e e e e e e e e e 75
5.4.1 Valid sequences of primitives L. e e e e e e e e e e e e 75

5.4.2 Invalid sequences of primitivesol e e 75

5.4.3 Parameter variations on primitives L. oo e e 75

544 Stress Tests . . . o o o i e e e e e e 75

545 Multipleresults L. e e 77

55 TestCases v v vt e e e 77
5.5.1 Valid sequences of primitives oL e e e e e e e e e e e e 77
SSLL 1001 . .. e e 77

5512 1.002 . . . e e e e 77

5513 1.003 . . e e e e 77

5514 1.004 . . e e 77

5515 1005 . . e e 77

5.5.2 Invalid sequences of primitivesol e e e 77
5521 2,001 . .. e e 77

5522 2002 . .. e e 77

5523 2.003 . .. e e 77

5524 2004 . . . 77

CONTENTS 7

5525 2005 . . . e 77

55.2.6 2006 e e 77

5.5.3 Parameter variations on primitiveso e 78

5.53.1 0 3.001 . . e 78

5532 3.002 . . . e e 78

5533 3.003 . . . e 78

554 StressTests o o e e e e e e 78

5541 4001 . . e 78

5542 4002 . . . e 78

5543 4003 . . . e 78

5544 4004 . . e 78

5545 4005 . . . e 78

554.6 4006o e 78

5547 4007 . . o e 78

5548 4008 . . .o e 78

5549 4009 . . . e 78

5.5.5 Multiple Results e e e e e e e e 79

5551 5.001 . . e 79

56 Example oL e 79

A Acronyms 81
B ESRO API Example Usage 83
B.l Invoker.C. L e e e e 83
B.2 invoksch.c L e e 83
B.3 performer.c L. e e e e e e e 83
B4 perfsch.c. oL e 83

C ESRO Program man Pages 85
D Trace Bit Definitions 93
E Neda PICS for ESROS 95
E.1 Introduction o e e e e 95
E.2 Identification L e e e e 95
E.2.1 Supplier Identification e e e e e 95

E.2.2 Implementation Information Lo 95

E3 ESROS . . . e 96
E.3.1 ESROS Protocol Summary L 96

E.3.2 ESROS Protocol Capabilities v i i et e e e e e 96

E.3.2.1 Overview of ESRO Services. i e 96

E.3.2.2 Connectionless Oriented Operation 96

E.3.2.3 Segmentationand Reassembly L . 96

E.3.24 Connection Oriented Operation 97

E.3.2.5 Concatenation and Separation 97

CONTENTS

List of Tables

2.1
22
2.3
24
25
2.6
2.7

D.1

ESRO Service Primitives o . o e e e e e 22
ESROS-SAP Management oo v v ittt it e e e e e e e e e 22
Service Primitives and corresponding functionso e 24
Network Management COUNtETS v v v v v v i e it e e e e e e e e e e e 30
Unresolved Symbols of ESROP 31
ESROP Configuration Parameters o . o e 31
TIMEIS o o o e e e e e 37
Complete List of Trace Bit Definitions it 94

10

LIST OF TABLES

List of Figures

1.1

2.1
22
23
24

3.1
32

4.1
4.2

5.1
52
53
5.4
5.5

Implementation Architecture L e e 16
Neda’s ESROP Module and its Interfaces, 20
Time sequence diagram for ESRO Services L o oL 23
ESROP Modules e e e e e 33
ESROP Finite State Machine e 34
Example of time sequence diagram for ESROS Services 46
Example of time sequence diagram for ESROS CB Services 50
Unix ESROS Processes. i e 52
MS-DOS/Windows ESROS Processes o e 53
Remote Test Method e 71
Coordinated Test Method o e e e 72
Distributed Test Method o . o e e 73
Local Test Method e 74
ESROS Test Tools o o oo e 76

11

12

LIST OF FIGURES

(©1999-2002 Neda Communications, Inc.

IBM is a registered trademark of International Business Machines Corporation.
Unix is a trademark of AT&T and Unix System Laboratories.

Sun is a registered trademark and Sun Workstation is a trademark of Sun Mi-
crosystems, Inc.

Windows is a registered trademark of Microsoft Corporation.

Preface

This document provides details on the programming development environment of Neda’s source code of ESROS
(Efficient Short Remote Operation Services) protocols. It will document the design of the system and the code written
to implement those protocols.

The scope of this document is the protocols of Efficient Short Remote Operation Services.

Who to contact

For more information about this document or its contents, please contact:

Neda Communications, Inc.
Phone: +1 425644-8026
Fax: 1+1 425562-9591
E-Mail: infolneda.com

13

14

LIST OF FIGURES

Chapter 1

Introduction

1.1 About This Product

Neda’s Implementation of ESRO — Source documents ESRO-FULL-SRC, the portable source code of Neda’s Imple-
mentation of the Efficient Short Remote Operation Services Protocol. This implementation conforms to "RFC-2188”
[1].
ESRO-FULL-SRC consists of the Efficient Short Remote Operations Base (ESROS-BASE-SRC) and Efficient
Short Remote Operations Test Tools (ESROS-TEST-SRC). ESRO-FULL-SRC relies on Neda’s Open C Platform [2].
Open C Platform and related documentation is supplied separately.

ESRO-BASE-SRC is a relatively complete implementation of the ESROS protocol specification. Complete sources
for both invoker and performer sides are implemented. The specific features and options implemented are enumer-
ated in Neda’s Protocol Implementation Conformance Statement (PICS). Neda’s PICS is included as a part of this
documentation in Appendix E.

ESRO-FULL-SRC is provided as portable software which may be ported to a variety of environments. Although a
great deal of portation specific code and documentation is included, it is important to note that they are provided only
as examples. It is only the portable software which is fully supported and maintained.

This implementation can be configured to be utilized in a complex Message Center, handling extremely high
volumes, or in a very small, embedded device whose size and efficiency are of the highest importance.

1.2 About This Document

This document supplies the documentation for the following products:

e ESRO-FULL-SRC
e ESRO-BASE-SRC

e ESRO-TEST-SRC

Some of the documentation may not be pertinent to the reader, but it is included for the sake of completeness.

It is recommended that for this document to be of the most use to the reader, they should be extremely familiar
with "RFC-2188” [1] and the Open C Platform [2]. There has been no attempt in this document to re-explain anything
previously covered in the Protocol Specifications.

For ease of reference, all citations from Neda source code files are printed in boldface type.

Chapter 1 consists of an introduction to the product, ESRO-FULL-SRC, and the whole document.

Chapter 2 describes the Efficient Short Remote Operation Protocol Engine.

Chapter 3 provides information about the interface to ESROS services.

15

16 CHAPTER 1. INTRODUCTION

Layer above ESROS

(Invoker) (e.g. EMSDP)

ESROS ESROS
Provider / \

uUbpP . TCP

Figure 1.1: Implementation Architecture

Chapter 4 describes the design and operation of real-world ESROS programs which have been ported to both Unix
and MS-DOS platforms. However, it is important to note that they are provided only as examples. It is only the
portable software which is fully supported and maintained.

Chapter 5 describes the testing methodologies and tools used to test an ESROS implementations.

Appendices include a Bibliography, a list of relevant Acronyms, ESROS API Example Usage, ESROS Program
Man Pages, Trace Bit Definitions and Neda’s Protocol Implementation Conformance Statement (PICS).

1.3 Architecture

Figure 1.1, Implementation Architecture depicts the architecture Neda’s implementation of the complete ESRO pro-
tocols.

ESROS-Daemon is responsible for implementation of ESRO-Protocol ("RFC-2188”.[1]) on both invoker and per-
former sides. ESROS-Daemon exposes the ESROS API (see chapter entitled ESROS API) to its users, the ESROS-
User-Daemon and the ESROS-System-Daemon.

1.4 Overview of Software

The software consists of two files:

e ocpForesros-svr4.tar

e esros-full-src.tar
esros-full-src.tar includes:

e Generation scripts to compile and build base.src and test.src directories.

e Portable sources for ESROS protocol engine

1.4. OVERVIEW OF SOFTWARE 17

e Unsupported system specific portations of ESROS protocol engine.
e Portable sources for ESROS test tools

e Unsupported system specific portations of ESROS test tools.

1.4.1 Getting the sources

From the installation home directory, type tar -xvf ocpForEsros-svr4.tar, to install the Open C Platform. This is
required for ESRO-FULL-SRC, ESRO-BASE-SRC and ESRO-TEST-SRC.

By typing tar -xvf esros-full-src.tar, the ESROS user,provider and test programs will be installed.

A brief description of the directory hierarchy follows:

base.src: This directory contain the sources and header files for the ESROS protocol engine

unsupp.svr4: Unsupported System V Rel. 4 specific portation of the protocol engine.

bin: Scripts and utilities for compilation of the software.

include: System wide header files such as target.h” which define portation specific parameters of the build.

ocp.svr4: Place holder for OCP header files. This directory should be replaced by the relevant complete OCP direc-
tory.

results.svr4: Place holder where the results of compilation (e.g., libraries and executables) will be stored.
test.src: This directory contain the sources and header files for the ESROS test tools.

unsupp.svr4: Unsupported System V Rel. 4 specific portation of the test tools.

It is very important to note that all sub directories under “unsupp.*” are not considered part of Neda ESROS
products and are supplied as example portations only. Eventhough, many of the example programs are described in
some detail in this document, they should not be considered a proper part of ESROS products.

1.4.2 Compiling and Building the Software
To build this distribution:
source sourceme.csh
And then:
./buildAll.sh

If you don’t have gmake, you may have to edit the build scripts.
To run esros example programs refer to the relevant sections of this document.

18

CHAPTER 1. INTRODUCTION

Chapter 2

ESRO Protocol Engine

2.1 Introduction

The ESRO layer operates above the Transport layer and provides services to other application layer entities. It pro-
vides remote operation services between application layer entities by relieving them of concern over how the remote
operation is achieved.

The Neda ESRO Protocol Engine (ESROP) is the Neda implementation of the ESRO protocol. The ESRO protocol
is defined in "RFC-2188" [1].

The Neda ESROP implementation is designed to be independent of the environment to which it will be ported.
ESROP software makes minimal assumptions about its target environment.

While this chapter describes how protocol options are implemented and used, it does not attempt to explain the
protocol. ESROP interface function calls are modeled after the ESROS service definition,”RFC-2188” [1]. References
to concepts defined by the ESRO Protocol Specifications are made throughout the book. We recommend reading the
ESRO Protocol Specification documents [1] in conjunction with this document.

ESROP module uses a set of common facilities. These common facilities are described in Open C Platform [1].
We suggest a review of that manual before starting this manual.

The chapter is divided into three basic parts. An overview and concepts of ESROP’s functionality can be found in
Section2.2. ESROS Service Primitives are described in Section2.3. Section 2.4 and Section2.5 define the upper and
lower interface functions, respectively, of ESROP. The environment dependent facilities and network management
are discussed in Section2.6 and Section2.7. Portation issues and design of ESROP are discussed in Section2.8 and
Section2.9.

2.2 Overview and Concepts

2.2.1 ESROP Service Features

To an ESROP user the ESROP Services offer the means to perform an Operation with another ESROP-User for the
purpose of exchanging ESROS Data Units (DU). More than one Operation may be in progress simultaneously between
the same pair of ESROP-Users.

2.2.2 Software Architecture

ESROP is designed to be independent of the environment to which it will be ported.
ESROP appears to its user as a link module with four defined interfaces. The ESROP module’s interfaces are
shown Figure 2.1.

19

20

CHAPTER 2. ESRO PROTOCOL ENGINE

4 ESROP ESROP ESROP h
SAP ACTION EVENT
MANAGEMENT PRIMITIVES PRIMITIVES
OPEN C NETWORK
PLATFORM MANAGEMENT
INTERFACE INTERFACE
- P
ESRO Protocol
TRANSPORT TRANSPORT TRANSPORT
SAP ACTION EVENT
K MANAGEMENT PRIMITIVES PRIMITIVES /

Figure 2.1: Neda’s ESROP Module and its Interfaces

2.3. ESRO SERVICE PRIMITIVES 21

2.2.2.1 Upper Interface

The ESROP upper interface is a series of function calls (primitives). Each function call accepts a group of arguments
(parameters).

The Neda ESROP upper interface provides the ESROP-User with primitives which match the definitions of ESROS
services [1]. Each function call is non-blocking and asynchronous.

ESROP requests and responses, collectively referred to as ESROP action primitives, are function calls to the
ESROP software module. ESROP action primitives are invoked by the ESROP-User. The code for ESROP action
primitives is provided by the ESROP software module.

ESROP indications and confirmations, collectively referred to as ESROP event primitives, are function calls to the
ESROP-User module. ESROP event primitives are invoked by the ESROP software module. The code for ESROP
event primitives is expected to be provided by the ESROP-User.

Section2.4 describes in detail the ESROP upper interface primitives and their parameters.

2.2.2.2 Lower Interface

The lower interface of the ESROP software module matches the upper interface of the Transport software module.

The ESROP lower interface is a series of function calls (primitives). Each function call accepts a group of argu-
ments (parameters).

Neda ESROP lower interface primitives match the ESRO Service definitions [2]. Lower interface function calls
are non-blocking and asynchronous.

Transport requests and responses, collectively referred to as Transport action primitives, are function calls to the
Transport software module. Transport action primitives are invoked by the ESROP software module. The code for
Transport action primitives is expected to be in the Transport software module.

Transport indications and confirmations, collectively referred to as Transport event primitives, are function calls to
the ESROP software module. Transport event primitives are invoked by the Transport software module. The code for
Transport event primitives is provided in the ESROP software module.

2.2.2.3 Timer and Data Unit Management Interface

ESROP relies on the availability of a group of facilities for data unit and timer manipulation. A common high-level
interface for these facilities is used by the ESROP module. This interface is defined in Open C Platform document,
[2] and reviewed later.

2.2.2.4 Network Management Interface

A set of counters is locally maintained by the ESROP software module. These counters, which may be used for
Network Management, are described later.

2.3 ESRO Service Primitives

This section describes the service primitives provided by the ESROP module, and the constraints on the sequence in
which the ESROP primitives may occur. Each ESROP-User interacts with the ESROP module through one or more
ESROP-SAPs.

The following is a list of ESRO service primitive names:

The Neda ESROP upper interface conforms to the ESRO Service Definition [2]. The constraints on the sequence
in which ESROP primitives may occur are explained in Reference [2].

22 CHAPTER 2. ESRO PROTOCOL ENGINE

ESRO Service Primitives

ESROS-INVOKE.request
ESROS-INOVKE-P.confirm
ESROS-INVOKE.indication
ESROS-RESULT.request
ESROS-RESULT.indication
ESROS-RESULT.confirm
ESROS-ERROR .request
ESROS-ERROR .indication
ESROS-ERROR .confirm
ESROS-FAILURE.indication

Table 2.1: ESRO Service Primitives

Function Description
ESROP_sapBind Bind an ESROP-SAP and register an ESROP-User.
ESROP_sapUnbind Unbind an ESROP-SAP and deregister an ESROP-User.

Table 2.2: ESROS-SAP Management

2.3.1 SAP Management

An ESROP-User must create an ESROP-SAP before it can use any of the services provided by the ESROP module.
Creation of an ESROP-SAP is accomplished through the ESROP _sapBind function. Parameters to ESROP_sapBind
communicate to the ESROP module both an ESRO-SAP selector address and a set of functions for handling event
primitives for that ESROP-SAP. ESROP event primitives are:

e ESROS-INVOKE.indication
e ESROS-RESULT.indication
o ESROS-ERROR.indication

e ESROS-FAILURE.indication

Deletion of an ESROP-SAP is accomplished through the ESROP_sapUnbind function. A summary of Neda
ESROP-SAP management facilities follows.

2.3.2 Operation Invocation

The sequence of ESROP primitives in an OPERATION is illustrated in the time sequence diagram below.

To initiate an ESROP operation, the invoker ESROP-User entity issues an ESROS-INVOKE.request at the ESROP
layer interface by invoking the function ESROP_invokeReq. The performer ESROP entity’s ESROP-SAP is specified
as one of the parameters of this action primitive.

The ESROS-INVOKE-P.confirm primitive is communicated to the invoker user through the return value/parameter
of the ESROP _invokeReq function.

An ESROS-INVOKE .indication event primitive is generated at the performer ESROP entity’s ESROP-SAP through
the invocation of the (*ESROP_invokeInd)() function associated with the performer ESROP-SAP.

2.3. ESRO SERVICE PRIMITIVES

-

INVOKER PERFORMER
SSrog. ESROS AP ESROS AP

Figure 2.2: Time sequence diagram for ESRO Services

23

24

CHAPTER 2. ESRO PROTOCOL ENGINE

Service Primitive Name

Neda Function Name

Source

ESROESROS-INVOKE.request ESROP_invokeReq() Invoker user
ESROS-INVOKE-P.confirm Ret Val of ESROP _invokeReq() Provider
ESROS-INVOKE.indication (*ESROP_invokelnd)() Provider
ESROS-RESULT.request ESROP _resultReq() Performer user
ESROS-RESULT.indication (*ESROP _resultInd)() Provider
ESROS-RESULT.confirm (*ESROP _resultCnf)() Provider
ESROS-ERROR.request ESROP _errorReq() Performer user
ESROS-ERROR .indication (*ESROP_errorInd)() Provider
ESROS-ERROR.confirm (*ESROP _errorCnf)() Provider
ESROS-FAILURE.indication (*ESROP _failurelnd)() Provider

Table 2.3: Service Primitives and corresponding functions

The performer ESROP-User can accept the operation and communicate the results by generating an ESROS-
RESULT.request at the ESROP layer interface by invoking the function ESROP_resultReq. The performer ESROP-
User can issue an ESROS-ERROR .request by invoking the function ESROP _errorReq.

An ESROS-RESULT.confirm or ESROS-ERROR.confirm event primitive is generated at the performer ESROP
entity ESROP-SAP through the invocation of the (*ESROP _resultCnf)() or (*ESROP _errorCnf)() function associated
with the performer ESROP-SAP.

An ESROS-RESULT.indication or ESROS-ERROR .indication event primitive is generated at the invoker ESROP
entity ESROP-SAP through the invocation of the (*ESROP_resultInd)() or (*ESROP _errorInd)() function associated
with the invoker ESROP-SAP.

A summary of all operation primitives appears below in Table 2.3:

The OPERATION may fail due to either the inability of the ESROS provider to transmit the INVOKE PDU or the
unwillingness of the ESROS performer user to accept an ESROS-INVOKE.indication. These cases are described later
in this chapter. The OPERATION may also fail as a result of the failure in delivery of RESULT or ERROR PDU. In
such cases an ESROS-FAILURE.indication event primitive is issued at the invoker or performer ESROP-SAP through
the invocation of the (*ESROP _failurelnd)() function.

2.4 Upper Interface Functions

2.4.1 SAP Management

The ESROP-User calls ESROP SAP management functions to register or deregister as an ESROS service user.

2.4.1.1 Bind an ESROP-User

Int
ESROP_sapBind (ESROP_SapDescsapDesc,
ESROP_SapSelsapSel,
ESROP_FunctionalUnit functionalUnit,
int (*invokeInd) (ESROP_SapSel,
ESROP_SapSel,
T_SapSel */
N_SapAddr */
ESROP_InvokeDesc,
ESROP_OperationValue,
ESROP_EncodingType,

2.4. UPPER INTERFACE FUNCTIONS 25

DU_View),

int (*resultInd) (ESROP_InvokeDesc,
ESROP_UserInvokeRef,
ESROP_EncodingType,
DU_View),

int (*errorInd) (ESROP_InvokeDesc,
ESROP_UserInvokeRef,
ESROP_EncodingType,
ESROP_ErrorValue,
DU_View),

int (*resultCnf) (ESROP_InvokeDesc,
ESROP_UserInvokeRef),

int (*errorCnf) (ESROP_InvokeDesc,
ESROP_UserInvokeRef),

int (*failureInd) (ESROP_InvokeDesc,
ESROP_UserInvokeRef,
ESROP_FailureValue))

This function binds an ESROP-User at the ESROP layer by creating an ESROP-SAP.

The sapSel argument specifies the ESROP-SAP Selector Address to be associated with this service user. The
ESROP-SAP descriptor value is returned to the caller through sapDesc argument.

The functionalUnit argument specifies the method of handshaking used by the SAP.

The remaining arguments specify the addresses of the callback functions (and their arguments) that the SAP should
invoke upon the occurrence of specific events. For instance, invokelnd points to the function that is executed when a
performer ESROP receives an invocation.

ESROP_sapBind returns 0 on successful completion. It returns a negative value if unsuccessful.

2.4.1.2 Unbind an ESROP-User

SuccFail
ESROP_sapUnbind (ESROP_SapSel sapSel)

This function unbinds an ESROP-User. If there are any remaining invocations associated with this SAP for that
ESROP-User, the pending or in process requests are dropped and if there are any events queued up for this ESROP-
User’s SAP, they are discarded.

The sapSel argument specifies the ESROP-SAP currently in use by the caller.

This function returns 0 on successful completion. It returns a negative value if unsuccessful.

2.4.2 ESROP Action Primitives
24.2.1 ESROS-INVOKE.request

Int

ESROP_invokeReq (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_SapSellocESRSap,
ESROP_SapSelremESRSap,
T_SapSel*remTsap,
N_SapAddr*remNsap,
ESROP_OperationValueopValue,
ESROP_EncodingTypeencodingType,
DU_View parameter)

26 CHAPTER 2. ESRO PROTOCOL ENGINE

The invoker ESROP-User invokes this function to initiate the invocation of an ESROS operation. The ESROP-
User specifies both local and remote ESROP-SAP. The locESROSap argument contains the ESROP-SAP Selector of
the invoker, while the remESROSap argument contains the ESROP-SAP of the performer. The remTsap specifies the
Transport SAP Selector of the performer and remNsap specifies the Network SAP of the performer. Invoker ESROP-
User passes an invocation identifier (userInvokeRef) to the ESROP which is returned to it in all future references to
that specific operation.

opValue is the operation value. The invoker ESROP-User can specity its desired encoding type through the encod-
ingType argument. parameter is the operation’s parameter.

An invocation descriptor is passed to the caller of the function (invoker ESROP-User) through the invokeDesc
argument to be used to identify the ESROS invocation in future references. If ESROP fails in initializing the invocation
operation a negative value is returned by the function, otherwise 0 is returned on successful completion of the function
call.

24.2.2 ESROS-RESULT.request

Int

ESROP_resultReq (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_EncodingTypeencodingType,

DU_View parameter)

When ESROP performer user accepts an invocation indication, it invokes this function to request transmission of
the result of the operation.

invokeDesc is the invocation identifier that was previously obtained through the ESROS-INVOKE.indication prim-
itive on performer-user side. Performer ESROP-User passes the userInvokeRef to ESROP which is returned to it in
all future references to the operation. encodingType reflects the encoding type of the parameter. parameter is the
operation’s parameter.

This function returns 0 on successful completion. If the function is unsuccessful, it returns a negative value.

2.4.2.3 ESROS-ERROR.request

Int

ESROP_errorReq (ESROP_InvokeDesc invokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_EncodingType encodingType,
ESROP_ErrorValue errorValue,
DU_View parameter)

When ESROP performer user accepts an invocation indication, it invokes this function to request transmission of
the error response to the invoker of the operation.

invokeDesc is the invocation identifier that was previously obtained through the ESROS-INVOKE.indication prim-
itive on performer-user side. encodingType reflects the encoding type of the parameter. parameter is the operation’s
parameter.

This function returns 0 on successful completion. If the function is unsuccessful, it returns a negative value.

2.4.3 ESROS Event Primitives
2.4.3.1 ESROS-INVOKE.indication

Int
(*ESROP_invokeInd) (ESROP_SapSellocESROSap,
ESROP_SapSelremESROSap,

2.4. UPPER INTERFACE FUNCTIONS 27

T_SapSel **remTsap,

N_SapAddr **remNsap,
ESROP_InvokeDescinvokeDesc,
ESROP_OperationValueoperationValue,
ESROP_EncodingTypeencodingType,
DU_Viewparameter)

The performer ESROP invokes this function to communicate an invoke indication to the ESROP-User. ESROP
specifies both the invoker ESROP-SAP Selector and the performer ESROP-SAP Selector.

The remTsap argument contains the Transport SAP Selector of the performer and remNsap specifies the Network
SAP of the performer. The encodingType argument specifies the encoding type of the parameter. parameter is the
operation’s parameter.

This function returns O in the case of success and a negative value if unsuccessful.

2.4.3.2 ESROS-RESULT.indication

Int

(*ESROP_resultInd) (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_EncodingTypeencodingType,
DU_View parameter)

The ESROP invokes this function to communicate to the ESROP-User a result indication.

invokeDesc is the invocation identifier that was previously communicated to the invoker user through ESROS-
INVOKE-P.confirm. userInvokeRef is the user’s invocation identifier that was passed to ESROP by invoker-user at the
time of initiation of ESROS-INVOKE.request. encodingType reflects the encoding type of the parameter used by the
performer ESROP-User. parameter is the operation’s parameter.

This function returns 0 in the case of success and a negative value if unsuccessful.

2.4.3.3 ESROS-ERROR.indication

Int

(*ESROP_errorInd) (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_EncodingTypeencodingType,
ESROP_ErrorValueerrorValue,
DU_Viewparameter)

The ESROP invokes this function to communicate to the invoker ESROP-User an error response to its invocation.

invokeDesc is the invocation identifier that was previously communicated to the invoker user through ESROS-
INVOKE-P.confirm (ESROP_invokeReq parameter). userInvokeRef is the user’s invocation identifier that was passed
to ESROP by invoker-user at the time of initiation of ESROS-INVOKE.request. encodingType reflects the encoding
type of the parameter used by the performer ESROP-User. parameter is the operation’s parameter.

This function returns 0 in the case of success and a negative value if unsuccessful.

2.4.3.4 ESROS-FAILURE.indication

Int

(*ESROP_failureInd) (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef,
ESROP_FailureValuefailureValue)

28 CHAPTER 2. ESRO PROTOCOL ENGINE

The ESROP invokes this function to communicate to the ESROP-User a failure indication.

invokeDesc is the invocation identifier that was previously communicated to the invoker ESROP-User through
ESROS-INVOKE-P.confirm (ESROP_invokeReq parameter) or communicated to the performer ESROP-User through
ESROS-INVOKE.indication. userInvokeRef is the user’s invocation identifier that was passed to ESROP by invoker-
user at the time of initiation of ESROS-INVOKE.request (ESROP_invokeReq) on invoker side or ESROS-RESULT/ERROR.request
on performer side.

The failureValue argument specifies the failure reason.

This function returns O in the case of success and a negative error value if unsuccessful.

2.4.3.5 ESROS-RESULT.confirm

Int
(*ESROP_resultCnf) (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef)

The ESROP invokes this function to communicate the confirmation of the result.

invokeDesc is the invocation identifier that was previously communicated to the performer ESROP-user through
ESROS-INVOKE.indication. userInvokeRef is the user’s invocation identifier that was passed to ESROP by performer
ESROP-User at the time of initiation of ESROS-RESULT.request (ESROP_resultReq).

This function returns 0 in the case of success and a negative value if unsuccessful.

2.4.3.6 ESROS-ERROR.confirm

Int
(*ESROP_errorCnf) (ESROP_InvokeDescinvokeDesc,
ESROP_UserInvokeRefuserInvokeRef)

The ESROP invokes this function to communicate the confirmation of the error.

invokeDesc is the invocation identifier that was previously communicated to the performer ESROP-user through
ESROS-INVOKE.indication. userInvokeRef is the user’s invocation identifier that was passed to ESROP by performer
ESROP-User at the time of initiation of ESROS-ERROR.request (ESROP_errorReq).

This function returns 0 in the case of success and a negative value if unsuccessful.

2.5 Lower Interface Functions

ESROP relies on the connectionless or connection oriented services provided by Transport layer based on the SDU
size. The following sections describe the Transport services assumed by ESROP.

2.5.1 Connectionless interface
2.5.1.1 UDP SAP Bind

UDP_SapDesc
UDP_sapBind (T_SapSelsapSel,
int (*datalInd) (T_SapSel,
N_SapAddr,
T_SapSel,
N_SapAddr,
DU_View))

2.6. ENVIRONMENT INTERFACE 29

This function binds the ESROP to the lower layer by creating a UDP-SAP.

The sapSel argument specifies the local T-SAP Selector Address to be associated with this UDP-SAP.

The datalnd argument specifies the callback function that gets executed when the lower layer has data for the
ESROP layer.

The UDP-SAP descriptor value is returned to the caller on successful completion. Otherwise a NULL value is
returned.

2.5.1.2 UDP SAP Unbind

SuccFail
UDP_sapUnBind (T_SapSel *sapSel)

This function unbinds an ESROP from the lower layer. If there are any remaining requests associated with this
SAP, the pending or in process requests are dropped and if there are any events queued up for this, they are dumped.

The sapSel argument specifies the UDP-SAP currently in use by the caller.

This function returns SUCCESS on successful completion and FAIL if unsuccessful.

2.5.2 Action Primitives

SuccFail

UDP_dataReq (UDP_SapDesc locSapDesc,
T_SapSel *remTsapSel,

N_SapAddr *remNsapAddr,

DU_View udpSdu)

This function is called by the ESROP layer when it needs to send a TSDU.
The locSapDesc argument identifies the local UDP SAP in use. remTsapSel specifies the destination SAP address.
remNsapAddr specifies the Network SAP address of the remote peer. udpSdu is a buffer containing the TSDU.

2.5.3 Event Primitives

Int

(*dataInd) (T_SapSel *remTsapSel,
N_SapAddr *remNsapAddr,

T_SapSel *locTsapSel,

N_SapAddr *locNsapAddr,

DU_View udpSdu))

The UDP layer invokes this function to communicate received SDU’s to the UDP user.

remTsapSel specifies the transport SAP address of the remote peer. remNsapAddr specifies the Network SAP
address of the remote peer. udpSdu is a buffer containing the TSDU.

Note: locTsapSel and locNsapAddr are reserved for future use. Do not rely on their values.

2.6 Environment Interface

This section describes the environment dependent facilities used by the ESROP module. The Neda publication, Open
C Platform [2], describes these facilities in detail.

2.6.1 Data Unit Management

ESROP uses all of the data unit management facilities described in Open C Platform [1].

30 CHAPTER 2. ESRO PROTOCOL ENGINE

No Counter name Contents

1 esrop_pduRetranCounter number of PDU Retransmissions
2 esrop_completeOperationCounter number of Completed Operations
3 esrop_protocolErrorsCounterd number of Protocol Errors

4 esrop_pduSentCounter number of PDUs Sent

5 esrop-invokePduRetranCounter no of Invoke PDU Retransmissions
6 esrop_badAddrCounter number of Bad Addresses

7 esrop_opRefusedCounter number of Operations Refused

8 esrop_udpSduSentCounter number of UDP SDU’s Sent

9 udpSdu_rcvd number of UDP SDU’s received
10 udp_pdu_bad number of bad UPD PDU’s

Table 2.4: Network Management Counters

2.6.2 Timer Management

ESROP uses all of the timer management facilities described in Open C Platform [1].

2.7 Network Management

Several counters are locally maintained to be used for Network Management in each ESROP entity (see Table 2.4).

2.8 Portation Notes

This section describes some of the more important points which should be considered when porting ESROP to a target
environment.

2.8.1 Unresolved Symbols

If all ESROP layer modules are linked together, the symbols listed in Table 2.5 are unresolved for the ESROP module.
The remaining symbols are associated with the Open C Platform[1] which contains detailed information about
each of these facilities.

2.8.2 Configuration

Several compile time constants must be configured before the ESROP module can be used. These constants are either
defined by ESROP or ESROP User. Some of these configuration parameters can be statically changed at run time by
changing the ESROP configuration file. The following table is the list of these configuration parameters.

2.8.3 Tracing

To facilitate the portation process of ESROP, some tracing capabilities have been built into this product.
To enable the tracing feature, the compile time constant TM_ENABLED must be defined.
Tracing level can be controlled through definition of trace masks in the ESROP configuration file.

2.8.4 Differences Between Unix and MS-DOS/Windows Portations

The major differences between the Unix and MS-DOS/Windows portations are isolated to several discrete locations
in the code. These differences are discussed in the following sections.

2.8. PORTATION NOTES

Symbol Module

DU _alloc Data Unit Module
DU _free Data Unit Module
DU_link Data Unit Module

G_duMainPool

Global Module (integration of all modules)

INET_in_addrToNsapAddr

Internet Module

INET _nsapAddrToin_addr

Internet Module

INET _portNuToTsapSel

Internet Module

INET _tsapSelToPortNu

Internet Module

NM_incCounter

Network Management Module

N_sapAddrCmp

Network Service Access Point Module

PF_crcl6 Public Facilities Module
QU_init Queue Management Module
QU_insert Queue Management Module
QU_move Queue Management Module
QU_remove Queue Management Module
SAP_selCmp Service Access Point Module

SEQ_elemObtain

Sequence Module (mem allocation for lists)

SEQ_elemRelease

Sequence Module

SEQ_poolCreate

Sequence Module

TMR _cancel

Timer Management Module

TMR _create

Timer Management Module

TMR _getData

Timer Management Module

TMR _getDesc

Timer Management Module

TM_hexDump Trace Module
TM_open Trace Module
TM_prAddr Trace Module
tm_loc (TM_loc) Trace Module
tm_here (TM_here) Trace Module
tm_trace (TM_trace) Trace Module

Table 2.5: Unresolved Symbols of ESROP

| Symbol | Definition
ESROP_K _UdpSapSel UDP SAP selector (currently 2002)
ESROP_SAPS Total number of SAP entries.
ESROP_INVOEKS Total number of concurrent invocations

INVOKE_PDU_SIZE

Invoke PDU size

NUMBER_OF_TIMERS

Maximum number of timers

MAX_SAPS Maximum number of active SAPs
MAXBFSZ Buffer size of Data Unit module
BUFFERS Total number of DU buffers
VIEWS Total number of DU views

Table 2.6: ESROP Configuration Parameters

31

32 CHAPTER 2. ESRO PROTOCOL ENGINE

2.8.4.1 Multiple Processes vs. Single Process

The most significant difference between the two portations lies in the manner in which an ESROS user communicates
with ESROS itself. Under Unix, ESROS runs as a separate task. There may thus be one or more ESROS users that
invoke ESROS primitives via an interprocess communication mechanism provided by the UPQ_BSD_ module.

MS-DOS, of course, does not support such a mechanism. Therefor, ESROS and ESROS users are linked together
as single executable. This is the same for Windows. As explained in the previous sections, ESROP has a call-back
interface to the upper layer. However, there are two different API’s available to the ESROS user (see Section, ESROS
API). In the case of applications that use the Call-back API, the inter-process communication module is eliminated for
one-process model. In the case of Function Call API, in place of the interprocess communication mechanism, there is
a a module that emulates the UPQ_BSD_ facilities. This module, named UPQ_SIMU_, uses disk files to simulate the
interprocess communication mechanism.

The developer of an ESROS application who has to port between these two environments will be chiefly concerned
with the ESROS user’s make file. Under Unix and for two process model, the ESROS user application is linked to the
UPQ_BSD._ library. Under MS-DOS it is linked to the UPQ_SIMU._ library. In addition, the MS-DOS user must link
to the libraries containing the ESROS code. The following excerpts illustrate this principle.

Libraries used building Unix ESROS user application as a separate process

USER_SH = $(LIBS_PATH) /esro_ushcb.a
UPQ = $(LIBS_PATH) /upg_bsd.a
GF = $(LIBS_PATH)/gf.a

Libraries used building MS-DOS ESROS user application in one process with Function Call API

USER_SH = $(LIBS_PATH) \esro_ush.lib

(
PRVDR_SH = $(LIBS_PATH)\sp_shell.lib
UPQ_SIMU = $(LIBS_PATH)\upg_simu.lib
UDP_IF = $(LIBS_PATH) \udp_pco.lib
ESROP_SH = $(LIBS_PATH) \esrop_sh.lib
PROT_ENG = $(LIBS_PATH) \esroprot.lib

GF = $(LIBS_PATH)\gf.lib

2.8.4.2 Libraries used building MS-DOS ESROS user application in one process with Call-back API

UDP_IF = $(LIBS_PATH)\udp_pco.lib
ESROP_SH = $(LIBS_PATH) \esrop_sh.1lib
PROT_ENG = $(LIBS_PATH) \esroprot.lib
GF = $(LIBS_PATH)\gf.lib

SF = $(LIBS_PATH)\sf.lib

FSM = $(LIBS_PATH) \fsm.lib

2.8.4.3 Scheduler Module (SCH.)

SCH_ module can be used for scheduling the program’s modules.

One of the common usages of SCH_ module is scheduling of further processing within the same module. This
happens most often to prevent re-entry to non-re-entrant code. For more information about the Scheduler module refer
to OPEN C Platform document.

2.9. DESIGN OVERVIEW 33

4 N\

USER - IN USER - OUT SAP

Interface Interface

PROTOCOL
FINITE STATE MACHINE

PDU PDU
FORMATTER PARSER

Figure 2.3: ESROP Modules

2.8.4.4 Timer Module (TMR.)

The TMR_ module defines a model and an interface for providing timer facilities to Open C Layers, regardless of the
environment, provided that all implementations of the TMR_ module conform to the interface defined here. For more
information about the Timer module refer to OPEN C Platform document.

2.8.4.5 FLEX & BISON

FLEX is a DOS portation of the lex utility commonly found on Unix systems. BISON is a DOS portation of the yacc
utility. These utilities are used in the compilation of the ESROS Scenario interpreter, ESROSSI.

2.9 Design Overview

An overview of the structure of the ESROP module appears in Figure 2.3.

The ESROS service user interface consists of the USER-IN Interface, USER-OUT Interface, and the SAP Map.

The USER-IN Interface is the module that deals with ESROP action primitives. userin.c contains the source to this
module.

The USER-OUT Interface is the module that deals with ESROP event primitives. userout.c contains the source to
this module.

The SAP Map deals with multiplexing of ESROP-Users. esrop_sap.c contains the functions related to this module.

34 CHAPTER 2. ESRO PROTOCOL ENGINE

CL-Performer
Transition Diagram
2-Way Handshake

CL-Invoker
Transition Diagram
2-Way Handshake

CL-Performer
Transition Diagram
3-Way Handshake

CL-Invoker
Transition Diagram
3-Way Handshake

CO-Performer
Transition
Diagram

CO-Invoker
Transition
Diagram

Figure 2.4: ESROP Finite State Machine

The ESROP Finite State Machine is the heart of ESROP. invokact.c/invact2.c, perfact.c/perfact2.c, clinvktd.c/clinvtd2.c,
and clperftd.c/clpertd2.c contain the functions related to this module.

The PDU Formatter deals with encoding of information into PDUs. The pduout.c contains the source to this
module.

The PDU Parser deals with decoding of information from PDUs. The pduin.c contains the source to this module.

2.9.1 SAP Management

ESROP has the capability of supporting communication with several entities in the layer above. This is accomplished
through the concept of an ESROP-SAP. struct SapInfo is the basic structure used. The SaplInfo structure associates a
series of event primitives with an ESROP_SapSel.

Saplnfo structures are maintained as doubly linked lists. SapInfoSeq contains pointers to the first and last SapInfo
structures. ESROP_init creates a pool of ESROP-SAPS SapInfo. ESROP_SAPS is a configuration parameter that
specifies the maximum number of ESRO-SAPs supported by ESROP.

Each SaplInfo structure maintains a list of active invocations associated with it. The InvokeInfoSeq field of SapInfo
structure is the head of this list.

2.9.2 ESROP Finite State Machine

The ESROP Finite State Machine (FSM) is the heart of ESROP. Figure 2.4 ESROP Finite State Machine is a high
level diagram of ESROP state machine.
Depending on the size of the SDU, the connection oriented or connectionless transition diagram is selected.

2.9.2.1 Events
The inputs to the FSM are:

/* User Action Primitives */
#define lsfsm_EvtInvokeReq2
#define lsfsm_EvtErrorReq3
#define lsfsm_EvtResultReqg4

2.9. DESIGN OVERVIEW

#define lsfsm_EvtPdulnputInd5
/* In PDU Indications */
#define 1sfsm_EvtPdulnvoke6
#define lsfsm_EvtPduResult?
#define lsfsm_EvtPdulAck8
#define lsfsm_EvtPduFailure9

#define lsfsm_EvtTimerIndl0

/* Timer Indications */
#define lsfsm_EvtInvokePduRetranTimerll
#define lsfsm_EvtResultPduRetranTimerl?2
#define lsfsm_EvtRefNuTimerl3
#define lsfsm_EvtInactivityTimerl4
#define lsfsm_EvtLastTimerl5
#define 1sfsm_EvtPerfNoResponseTimerl6

Each of these events have some information associated with them:

typedef union FSM_EventInfo {

struct InvokeReq ({
ESRO_SapSel remESROSap;
T_SapSel *remTsap;
N_SapAddr *remNsap;
ESROP_OperationValue opValue;
ESROP_EncodingType encodingType;
DU_View parameter;
} invokeReq;

struct ResultReq {
Bool isResultNotError;
ESROP_EncodingType encodingType;
DU_View parameter;
} resultReg;

struct ErrorReq {

Bool isResultNotError;
ESROP_EncodingType encodingType;
ESROP_ErrorValue errorValue;

DU_View parameter;
} errorReq;

struct Internallnfo {
Int expiredTimerName;

} internallnfo;

struct TmrInfo ({

Int name; 7%)
long subscript;
Int datum;)

} tmrInfo;

36 CHAPTER 2. ESRO PROTOCOL ENGINE

} FSM_EventInfo;

Each time one of these events is observed by the USER-IN Interface module, by the ESRO-PDU PARSER module,
or by the Timer Management Module, the event code and the information associated with it are passed to the event
processor (esropfsm).

2.9.2.2 Event Processor

PUBLIC Int
FSM_runMachine (FSM_Machine *machine, FSM_EventId evtId)

FSM_runMachine contains the information regarding the current state of an ESROS operation. evtld is an event
ID corresponding to the event that has been observed.
Each state has an entry and an exit functions associated to it.

typedef struct FSM_State {
Int (*entry) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
Int (*exit) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
struct FSM_Trans *trans;
String name;
} FSM_State;

Using the information regarding the current state and the observed event, FSM_runMachine looks into the link list
of transitions and finds the next state corresponding to the observed event. The transitions are a link list of:

typedef struct FSM_Trans {
FSM_EventId evtId;
Bool (*predicate) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
Int (*action) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
FSM_State *nextStatePtr;
String name;
} FSM_Trans;

The exit function of the current state is called. Then the action function is executed. After that, the current sate is
changed to the next state and the entry function of the next state is called.

2.9.2.3 State Information

Information regarding the state of each invocation is maintained in a structure FSM_State. FSM _State contains various
information about the current state of a connection.

2.9. DESIGN OVERVIEW 37

Name Function Variable name
retransTimeout Retransmission timer interval invokelnfo-;retransTimeout
refKeepTime Reference Number expiration time | invokelnfo-;refKeepTime
rwait Last timer invokelnfo-;rwait
inactivityDelay Inactivity time invokelnfo-;inactivityDelay
perfNoResponse Performer response time-out invokelnfo-;perfNoResponse

Table 2.7: Timers

typedef struct FSM_State {
Int (*entry) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
Int (*exit) (FSM_Machine *machine,
FSM_UserData *userData,
FSM_EventId evtId);
struct FSM_Trans *trans;
String name;
} FSM_State;

2.9.3 ESROS Timers
The timers of ESROP are statically defined as follows.

2.9.4 ESROP PDU Parser

lower_datalnd [lowerind.c] delivers an TSDU to ESROP.

inpdu reads the PDU header of an incoming PDU. It constructs the PDU structure and strips the header from the
data buffer. If there is no data in the buffer, it frees it. At the completion of inpdu, ESRO-PDU contains the information
about the received PDU. This information is then used by finite state machine.

A new machine is created through esrop_invokelnit facility.

2.9.5 ESROP PDU Formatter

Formatting of ESRO-PDUs is accomplished through a set of functions contained in pduout.c.

2.9.6 Operation Invocation

The sequence of ESROS primitives in a successful operation is next chapters. This section briefly describes the
procedures that ESROP performs to invoke an operation. The description here does not deal with all possible state
transitions; only the normal state transitions are described to give a general view to the reader. It is recommended that
this section be read in conjunction with the source code.

2.9.6.1 Invoker ESROP-Provider

Upon invocation of ESROS-INVOKE.request [userin.c], the invoker ESROP-Provider allocates a new machine and
sets up the parameters relating to the invoke request event. Then delivers the ESROS-INVOKE.request event to
the event processor FSM_runMachine. The state machine is assumed to be in the start state. The resulting action
transition tr_cllnvokerO1/tr_2clInvokerO1 [invokact.c/invact2.c] saves the remote address and the parameter which the
user wishes to invoke. An invoke reference number which will be used to identify the invocation is created. The

38 CHAPTER 2. ESRO PROTOCOL ENGINE

ESRO-INVOKE-PDU is formed and transmitted. A retransmission timer is also initialized. The resulting state is
ESRO-INVOKE-PDU Sent state.

In ESRO-INVOKE-PDU Sent state, when the retransmission timer expiration event occurs, it indicates that the
retransmission interval has expired since the last ESRO-INOVKE-PDU transmission, or the first transmission af-
ter ESROS-INVOKE.request. The resulting action transition tr_clInvoker02/tr_2clInvoker02 (invokact.c/invact2.c)
retransmits the ESRO-INVOKE-PDU while the number of retransmissions is less than maximum number of re-
transmissions (invoke-;nuOfRetrans). The retransmission counter is incremented and when the maximum number
of retransmissions is reached, the last timer is started. The retransmission continues to await the arrival of the ESRO-
RESULT-PDU or ESRO-ERROR-PDU, or last timer time out (maximum number of retransmissions), or receipt of
ESRO-FAILURE-PDU.

In ESRO-INVOKE-PDU Sent state, when the last timer expiration event occurs after maximum retransmission of
ESRO-INVOKE-PDU’s, the tr_cllnvoke03/tr_2clInvoker03 (invokact.c/invact2.c) action function issues an ESROS-
FAILURE.indication primitive and initializes the reference number timer. The next state is the Invoker Reference
Number Wait state that waits for the reference number timer to expire.

On receipt of ESRO-RESULT-PDU or ESRO-ERROR-PDU in the ESRO-INVOKE-PDU Sent state, the action and
next state depends on the service mode and eventually 2-Way or 3-Way handshake. In the case of 3-Way handshake, the
tr_clInvoker04 (invokact.c) action function sends an ESRO-ACK-PDU, issues ESROS-RESULT.indication or ESROS-
ERROR.indication primitive, and initializes the inactivity timer. The resulting state is ESRO-ACK-PDU-Sent state.
In the case of 2-Way handshake, the tr_2clInvoker04 (invact2.c) action function issues ESROS-RESULT.indication or
ESROS-ERROR .indication primitive, and initializes the reference number timer.

In ESRO-INVOKE-PDU Sent state, on receipt of an ESRO-FAILURE-PDU, the tr_clInvoker05/tr_2clInvoker05
action (invokact.c/invact2.c) issues an ESROS-FAILURE.indication primitive with User Not Responding failure cause,
and initializes the reference number timer. The resulting state is wait state for invoker reference number to expire.

In the case of 3-Way handshake, after receiving the ESRO-RESULT-PDU or ESRO-ERROR-PDU and going to
ESRO-ACK-PDU send state, the duplicate ESRO-RESULT-PDU or ESRO-ERROR-PDU causes the action function
tr_cllnvoker(O7 (invokact.c) to initialize the inactivity timer and send another ESRO-ACK-PDU. The state machine
stays in the ESRO-ACK-PDU Send state until the inactivity timer time-out.

In the Invoker RefNu Wait state, when the reference number timer time-out event occurs, the action tr_clInvoker08/tr_2clInvokerQ7
(invokact.c/invact2.c) releases the invoke reference number and the state machine goes to idle state.

In Invoker Reference Number Wait state, when ESRO-RESULT-PDU or ESRO-ERROR PDU is received, the
action function tr_clInvoker09/tr_2clInvoker06 (invokact.c/invact2.c) resets the invoke reference number timer. The
machine doesn’t change state.

In the case of 3-Way handshake, In ESRO-ACK-PDU Send state, when the inactivity timer expiration event occurs,
the action function tr_cllnvoker10 (invokact.c) initializes the reference number timer, and the state is changed to
Invoker Reference Number Wait state.

2.9.6.2 Performer ESROP-Provider

When ESROP receives an ESRO-INVOKE-PDU, it parses it, then delivers the INVOKEIND event to the event proces-
sor. The state machine is assumed to be in start state. The resulting action transition tr_clPerformer01/tr_2clPerformer01
(perfact.c/perfact2.c) accepts the ESRO-INVOKE-PDU and issues the ESROS-INVOKE.indication event primitive as-
sociated with the invoker of the operation. The new state becomes Invoke PDU Received state.

On receipt of an ESROS-RESULT.request primitive from performer user, the action transition tr_clPerformer02/tr_2clPerformer03
(perfact.c/perfact2.c) adds the invoke reference number to the active list, transmits the ESRO-RESULT-PDU or ESRO-
ERROR-PDU, and sets the retransmission timer. In the case of 3-Way handshake, the state is changed to ESRO-ACK-
PDU Wait state, waiting for ESRO-ACK-PDU. In the case of 2-Way handshake, the Inactivity Timer is set and the
state is changed to Result PDU Retransmit.

In the case of 3-Way handshake, on receipt of an ESRO-ACK-PDU in ESRO-ACK-PDU Wait state, the action tran-
sition tr_clPerformer03 (perfact.c) initializes the invoke reference number timer and issues an ESROS-RESULT.confirm
or an ESROS-ERROR .confirm. The state is changed to Reference Number Wait state.

2.9. DESIGN OVERVIEW 39

In the case of 3-Way handshake, when Inactivity Timer expires, the action transition tr_2clPerformer06 (perfact2.c)
initializes the invoke reference number timer and issues an ESROS-RESULT.confirm or an ESROS-ERROR .confirm.
The state is changed to Reference Number Wait state.

The duplicate ESRO-INVOKE-PDUs in ESRO-INVOKE-PDU received state are ignored, and state machine stays
in the same state.

In the case of 3-Way handshake, and in ESRO-ACK-PDU Wait state, when the ESRO-RESULT-PDU or ESRO-
ERROR-PDU retransmission timer expires, the action transition tr_clPerformer05 (perfact.c) retransmits the ESRO-
RESULT-PDU or ESRO-ERROR-PDU while the number of retransmissions is less than the maximum. The timer
for number of retransmissions is incremented. The state machine stays in the ACK-PDU Wait state. The duplicate
ESRO-INVOKE-PDUs in ESRO-ACK-PDU Wait state are ignored, and state machine stays in the same state.

In the case of 2-Way handshake, and in Result PDU Retransmit state, when a duplicate Invoke PDU arrives, the
action transition tr_2clPerformer05 (perfact2.c) retransmits the ESRO-RESULT-PDU or ESRO-ERROR-PDU and the
state machine stays in the same state.

In the ESRO-INVOKE-PDU received state, in the case of any kind of internal failure in ESROP, the action transi-
tion tr_clPerformerQ8/tr_clPerformer04 (perfact.c/perfact2.c) sends an ESRO-FAILURE-PDU. The state is changed to
Connectionless Performer Start.

In the case of 2-Way handshake, when Inactivity Timer expires, the action transition tr_clPerformer(09 issues an
ESROS-FAILURE.indication primitive and initializes the invoke reference number timer. The state is changed to
Performer Reference Number Wait state.

In the case of 3-Way handshake and in the ESRO-ACK-PDU Wait state, on expiration of last timer, the action
transition tr_clPerformer09 (perfact.c) issues an ESROS-FAILURE.indication primitive and initializes the invoke ref-
erence number timer. The state is changed to Performer Reference Number Wait state.

In Performer Reference Number Wait state, the expiration of reference number timer causes the action transition
tr_clPerformer10/tr_2clPerformer08 (perfact.c/perfact2.c) to release the invoke reference number. The state is changed
to Connectionless Performer Start.

In Performer Reference Number Wait state, on receipt of duplicate ESRO-INVOKE-PDU, the action transition
tr_clPerformer7/tr_2clPerformer7 (perfact.c/perfact2.c) resets the invoke reference number timer. The state is not
changed.

In the case of 3-Way handshake and in Performer Reference Number Wait state, on receipt of duplicate ESRO-
ACK-PDU, the action transition tr_clPerformer11 resets the invoke reference number timer. The state is not changed.

40

CHAPTER 2. ESRO PROTOCOL ENGINE

Chapter 3

ESRO API

This chapter provides information about the interface to ESROS services. It is intended for the users of the ESROS
sublayer.

The ESROS API is available in two different styles. In the first case the events are made available to the user of the
API through function calls. This is known as the Function Call API. Functions of this API implementation all have the
ESRO_ prefix. In the second case ESROS events trigger call backs to functions registered by the user of the ESROS
API. This is known as Call back API. Functions of this API implementation all have the ESRO_CB_ prefix, in which
CB stands for Call Back.

3.1 ESROS With Function Call API

This section provides information about the Function Call API.

The services provided by the ESROS are defined in the ESROS Protocol Specification. The requests and responses
are communicated via non-blocking function calls. Remote operation requests, and error and failure indications are
communicated to the ESROS user via a call to the ESRO_getEvent function, which may be a blocking call in some
implementations.

Remote operation requests, result, error and failure indications are delivered to the ESROS user in an event struc-
ture. The reader should consult the following chapters for information about the parameters which make up the
structures.

The following subsections describe the ESROS library functions.

3.1.1 [Initialize the Parameters

PUBLIC ESRO_RetVal
ESRO_init (String configFileName)

The argument is defined as follows:

configFileName Config file name

configFileName specifies the config file name that contains ESROS initialization values.

3.1.2 Activate ESROS Service Access Point

The ESRO_sapBind function binds an ESRO Service Access Point (ESRO_SAP) to the current user process. It has the
following syntax:

41

42 CHAPTER 3. ESRO API

PUBLIC ESRO_RetVal

ESRO_sapBind (ESRO_SapDesc*sapDesc, /* out */
ESRO_SapSelsapSel
ESRO_FunctionalUnitfunctionalUnit)

The arguments are defined as follows:

sapDesc Return value: the SAP descriptor
sapSel SAP selector
functionalUnitHandshaking type

sapDesc is a pointer to an ESRO_SapDesc structure that is created for the current user.

sapSel identifies the ESROS SAP. If the SAP is in use by another user the function returns an error value.

functionalUnit specifies the type of handshaking that is in effect for the SAP. ESRO_2Way specifies two-way
handshaking. ESRO_3Way specifies three-way handshaking. In order for ESROS user processes to interact with one
another over a network, they must specify local SAPs that use the same type of handshaking. Furthermore, once a
SAP is created the handshaking type stays in effect until the SAP is released. Once an ESRO-SAP has been activated,
the user process can use the services provided by ESROS sublayer.

The function returns zero if successful, otherwise it returns a nonzero error value.

3.1.3 Deactivate ESROS Service Access Point

The ESRO_sapUnbind function deactivates the ESROs service access point which is currently in use. It has the
following syntax:

PUBLIC ESRO_RetVal
ESRO_sapUnbind (ESRO_SapSel sapSel)

The argument is defined as follows:

sapSel SAP selector

sapSel identifies the ESROS SAP which is already in use.
The function would return O if successful, and a nonzero error value otherwise.

3.1.4 ESROS Invoke Service Request

The ESRO_invokeReq function requests a remote operation. It has the following syntax:

PUBLIC ESRO_RetVal
ESRO_invokeReq(ESRO_InvokeId*invokeld,/* out */
ESRO_UserInvokeRefuserInvokeRef,
ESRO_SapDesclocSapDesc,
ESRO_SapSelremESROSap,
T_SapSel*remTsap,
N_SapAddr*remNsap,
ESRO_OperationValueopValue,
ESRO_EncodingTypeencodingType,
Intparameterlen,

Byte*parameter)

The input arguments are defined as follows:

3.1. ESROS WITH FUNCTION CALL API 43

invokeId Return value: invocation identifier
userInvokeRef User’s invocation reference
locSapDesc The local SAP descriptor

remESROSap Remote network SAP address

remTsap Remote Transport SAP.

remNsap The remote SAP selector

opValue Operation value

encodingType Encoding type

parameterLen The length of the parameter
parameter The address of the parameter buffer.

invokeld is assigned by ESROS sublayer. It is returned by ESROS sublayer. This identifier is used in future
communications between ESROS sublayer and service user to identify the invocation for ESROS sublayer.

userInvokeRef is assigned by ESROS user. It is passed to ESROS sublayer by the user of service. This identifier
is used in future communications between ESROS sublayer and service user to identify the invocation for the user of
ESROS.

locSapDesc is the local SAP descriptor which is provided by ESROS sublayer at the time of SAP bind.

If ESROS can serve the invoker, the function returns 0 and the invocation identifier is returned through the invokeld
parameter. If ESROS cannot serve the invoker, the function returns a nonzero failure reason value.

3.1.5 ESROS Result Service Request

The ESRO_resultReq function is issued by the performer of the operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_resultReq(ESRO_InvokeIdinvokelId,
ESRO_UserInvokeRefuserInvokeRef,
ESRO_EncodingTypeencodingType,
Intparameterlen,

Byte*parameter)

The input arguments are defined as follows:

invokeId Invocation Identifier.
userInvokeRef User’s invocation reference
encodingType Encoding type

parameterLen Length of the parameter
parameter Address of the parameter buffer.

This primitive should be issued after an ESRO_INVOKEIND event. If ESROS cannot serve the requestor, the
function returns a nonzero reason value which is the failure value.

3.1.6 ESROS Error Service Request

The ESRO _errorReq function is issued by the performer of the operation in case of error in performing the operation.
It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_errorReq(ESRO_InvokeIdinvokeId,
ESRO_UserInvokeRefuserInvokeRef,
ESRO_EncodingTypeencodingType,
ESRO_ErrorValueerrorValue,
Intparameterlen,

Byte*parameter)

44 CHAPTER 3. ESRO API

The input arguments are defined as follows:

invokeId The Invocation Identifier.
userInvokeRef User’s invocation reference
encodingType Encoding type

errorValue Identifies the nature of the error.
parameterlen The length of the parameter
parameter String describing the error.

This primitive should be issued after a INVOKEIND event. If esros cannot serve the requestor, the function returns
a negative value which is the failure value.

3.1.7 Get an event

If any event has occurred in ESROS sublayer, the ESRO_getEvent function gets the event(s). Based on the value of
wait, it either waits for and event (if no event available) or immediately returns.

PUBLIC ESRO_RetVal ESRO_getEvent (ESRO_SapDesc sapDesc,
ESRO_Event *event, Bool wait)

The input arguments are defined as follows:

sapDesc Return value: the SAP descriptor
event ESROS event
wait Blocking/non-blocking flag

The function returns any of the following event codes as the corresponding events are detected:

ESRO_INVOKEIND Remote user is requesting an operation
ESRO_FAILUREIND Operation has failed

ESRO_RESULTIND ESRO-RESULT-PDU recieved
ESRO_ERRORIND ESRO-ERROR-PDU received
ESRO_RESULTCNF ESROS RESULT confirm

ESRO_ERRORCNF ESROS ERROR confirm

The function returns negative error number if unsuccessful, or the number of events (0 or greater than 0).
The data structures of ESROS events and the corresponding event codes are listed below:

3.1.8 Sample Code

The code fragments described in the following sections illustrate the steps required to create a ESRO service access
point, and invoke and perform an operation. They are patterned after the primitives of the time sequence in , Example
of time sequence diagram for ESROS Services. The code fragments themselves are listed in , ESRO API Example
Usage. The code sample “invoker.c” implements the left side, and the code sample “performer.c” implements the right
side.

3.1.8.1 invoker.c

invoker.c first establishes a SAP, then issues an ESRO_invokeReq of a shell command operation. In this example, the
command operation is “date”. It receives a confirmation (ESROESRO_ResultInd) indicating that the operation was
performed. It then retrieves the results which are communicated through the ESRO_ResultInd.

3.2. ESROS WITH CALLBACK API 45

3.1.8.2 performer.c

performer.c receives the ESRO _Invokelnd of a “date” command operation in the struct ESRO_Invokelnd. The result
of the command is the system date which is returned to invoker.c through ESRO _resultReq. performer.c then waits for
the next request from invoker.c.

3.2 ESROS With Callback API

This section provides information about the callback API functions.

The services provided by the ESROS are defined in the ESROS Protocol Specification,”RFC-2188” [1]. The
requests are issued through function calls. Callback functions associated with ESROS events are passed to ESROS at
the time of sapBind function call.

The following subsections describe the ESROS library functions

3.2.1 Initialize the Parameters

PUBLIC ESRO_RetVal
ESRO_CB_init (String configFileName)

The argument is defined as follows:
configFileName Config file name

configFileName specifies the config file name that contains ESROS initialization parameters.

3.2.2 Activate ESROS Service Access Point

The ESRO_CB_sapBind function binds an ESRO Service Access Point (ESRO_SAP) for the current user process. It
has the following syntax:

PUBLIC ESRO_RetVal
ESRO_CB_sapBind (
ESRO_SapDesc *sapDesc,

ESRO_SapSel sapSel,

ESRO_FunctionalUnit functionalUnit,

int (*invokelInd) (ESRO_SapDesc locSapDesc,
ESRO_SapSel remESROSap,

T_SapSel *remTsap,

N_SapAddr *remNsap,

ESRO_InvokeId invokeld,

ESRO_OperationValue opValue,
ESRO_EncodingType encodingType,

DU_View parameter),

int (*resultInd) (ESRO_InvokeId invokelId,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

DU_View parameter),

int (*errorInd) (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

ESRO_ErrorValue errorValue,
DU_View parameter),

46

CHAPTER 3. ESRO API

INVOKER PERFORMER
ESROS AP ESROS AP

Figure 3.1: Example of time sequence diagram for ESROS Services

3.2. ESROS WITH CALLBACK API 47
int (*resultCnf) (ESRO_InvokeId invokeld,

ESRO_UserInvokeRef userInvokeRef),

int (*errorCnf) (ESRO_InvokeId invokeld,

ESRO_UserInvokeRef userInvokeRef),

int (*failurelnd) (ESRO_InvokeId invokeld,

ESRO_UserInvokeRef
ESRO_FailureValue

userInvokeRef,
failurevValue))

The input arguments are defined as follows:

sapDesc Local SAP descriptor (outgoing param)
sapSel Local SAP selector

functionalUnit Handshaking type

locSapDesc Local SAP descriptor
remESROSap Remote network SAP address
remTsap Rmote Transport SAP.

remNsap The remote SAP selector

invokeId Invocation identifier
userInvokeRef User’s invocation reference
opValue Operation value

encodingType Encoding type

errorValue Error value

failureValue Failure value

parameter parameter.

(*invokeInd) () Invoke indication function
(*resultInd) () Result indication function
(*errorInd) () Error indication function
(*resultCnf) () Result confirmation function
(*errorCnf) () Error confirmation function
(*failureInd) () Failure indication function

sapDesc is a pointer to an ESRO_SapDesc structure that is created for the current user.

sapSel identifies the ESROS SAP. If the SAP is in use by another user the function returns an error value.

functionalUnit specifies the type of handshaking that is in effect for the SAP. ESRO_2Way specifies two-way
handshaking. ESRO_3Way specifies three-way handshaking. In order for ESROS user processes to interact with one
another over a network, they must specify local SAPs that use the same type of handshaking. Furthermore, once a
SAP is created the handshaking type stays in effect until the SAP is released. Once an ESRO-SAP has been activated,
the user process can use the services provided by ESROS.

After its ESRO-SAP has been activated, the user process can use the services provided by ESROS.

The function returns zero if successful, otherwise it returns a nonzero error value.

3.2.3 Deactivate ESROS Service Access Point

The ESRO_CB _sapUnbind function deactivates the ESROs service access point which is currently in use. It has the
following syntax:

PUBLIC ESRO_RetVal
ESRO_sapUnbind(ESRO_SapSel sapSel)

The argument is defined as follows:

sapSel SAP selector

48 CHAPTER 3. ESRO API

sapSel identifies the ESROS SAP which is already in use.
The function would return O if successful, and a nonzero error value otherwise.

3.2.4 ESROS Invoke Service Request

The ESRO_CB_invokeReq function requests a remote operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_CB_invokeReq (ESRO_InvokeId *invokeld,/* out */
ESRO_UserInvokeRef userInvokeRef,

ESRO_SapDesc locSapDesc,

ESRO_SapSel remESROSap,

T_SapSel *remTsap,

N_SapAddr *remNsap,

ESRO_OperationValue opValue,

ESRO_EncodingType encodingType,

DU_View parameter)

The input arguments are defined as follows:

invokeId Return value: invocation identifier
userInvokeRef User’s invocation reference
locSapDesc The local SAP descriptor
remESROSap Remote network SAP address

remTsap Rmote Transport SAP
remNsap The remote SAP selector
opValue Operation value
encodingType Encoding type
parameter user data

invokeld is assigned by ESROS sublayer. It is returned by ESROS sublayer and identifies an invocation for ESROS
sublayer. This identifier is used in future communications between ESROS sublayer and service user to identify the
invocation for ESROS sublayer.

userInvokeRef is assigned by ESROS user. It is passed to ESROS sublayer by the user of service. This identifier
is used in future communications between ESROS sublayer and service user to identify the invocation for the user of
ESROS.

locSapDesc is the local SAP descriptor which is provided by ESROS sublayer at the time of SAP bind.

parameter is a pointer to a DU_view data structure into which user data was previously copied. Refer to the Open
C Platform document [2] for a discussion of the DU_ module.

If ESROS can serve the invoker, the function returns 0 and the invocation identifier is returned through the invokeld
parameter. If ESROS cannot serve the invoker, the function returns a nonzero failure reason value.

3.2.5 ESROS Result Service Request

The ESRO_CB _resultReq function is issued by the performer of the operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_CB_resultReq(ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

DU_View parameter)

The input arguments are defined as follows:

3.2. ESROS WITH CALLBACK API 49

invokeId invocation Identifier
userInvokeRef User’s invocation reference
encodingType Encoding type

parameter Parameter.

This primitive should be issued after invokelnd function is called. If ESROS cannot serve the requestor, the
function returns a nonzero reason value which is the failure value.

3.2.6 ESROS Error Service Request

The ESRO_CB_errorReq function is issued by the performer of the operation in case of error in performing the opera-
tion. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_CB_errorReq (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

ESRO_ErrorValue errorValue,
DU_View parameter)

The input arguments are defined as follows:

invokeId The Invocation Identifier
userInvokeRef User’s invocation reference
encodingType Encoding type

errorValue Error value

parameter Parameter.

This primitive should be issued after invokelnd function is called. If ESROS cannot serve the requestor, the
function returns a negative value which is the failure value.

3.2.7 Sample Code

The code fragments described in the following sections illustrate the steps required to create a ESRO service access
point, and invoke and perform an operation. They are patterned after the primitives of the time sequence in , Example
of time sequence diagram for ESROS CB Services. The code fragments themselves are listed in , ESRO API Example
Usage. The code sample “invoksch.c” implements the left side, and the code sample “perfsch.c” implements the right
side.

3.2.7.1 invoksch.c

invoksch.c first establishes a SAP, then issues an ESRO_invokeReq of a shell command operation. In this example,
the command operation is ’date”. The resultInd function is called indicating that the operation was performed and the
result is passed to it through data parameter.

3.2.7.2 perfsch.c

perfsch.c establishes a SAP and waits for a request from invoksch.c. The invokelnd function is called when the request
for a command operation arrives. The result of the ’date” command is the system date. perfsch.c then returns the data
to invoksch.c through ESRO_resultReq. perfsch.c then waits for the next request from invoksch.c.

50

CHAPTER 3. ESRO API

INVOKER PERFORMER
ESROS AP ESROS AP

Figure 3.2: Example of time sequence diagram for ESROS CB Services

Chapter 4

ESROS Programs

4.1 Introduction

This chapter describes the design and operation of real-world ESROS programs which have been ported to both Unix
and MS-DOS platforms. These programs fall into one of three categories:

e ESROS Service Provider - There is only one ESROS service provider program, the Unix ESROS-Daemon.
Under MS-DOS the ESROS service provider entity is bound to individual ESROS Service Users at build-time.

e ESROS Service Users - As part of the Reference Implementation, several ESROS Service User programs have
been developed to facilitate testing of ESROS installations.

e ESROS Support Programs - This category includes a program for interpreting and displaying ESROS PDU logs.

4.2 Providers and Users - Unix vs. MS-DOS/Windows
4.2.1 Unix

The ESROS provider program, ESROS, runs under Unix as a process separate from its potentially numerous user
processes. There may be one or more ESROS user processes that invoke ESROS primitives via the interprocess
communication mechanisms provided by the underlying operating system.

In order to run an ESROS user program under Unix, it is necessary to first start the ESROS provider program. Each
user, in turn, opens an ESROS service access point (SAP) at run time through which it invokes ESROS primitives.

Each of the ESROS test utilities is really a pair of programs - one Invoker and one Performer. In order to success-
fully test ESROS both need to be started in the proper order: Performer first, then Invoker.

The Invoker and Performer need not share the same instance of ESROS, although it is always worthwhile to test
ESROS in this mode. Indeed, it is perfectly normal to have the Invoker and its copy of ESROS execute on one machine
and the Performer and its copy on another (provided, of course, that the two machines have IP connectivity). These
two cases are illustrated in the above figure. In either case, the Invoker application must specify the IP address of the
peer Performer/ESROS combination. This is discussed in greater detail in later sections of this chapter.

4.2.2 MS-DOS/Windows

Under MS-DOS, ESROS users are linked to the ESROS provider at build-time, since MS-DOS does not provide
facilities for running multiple, concurrent processes. In the case of Microsoft Windows, the same single process
model is used. Thus, at any given time, only one application can be running. In the case of the test programs this
will be either an Invoker or a Performer. That application’s peer must execute on another network-connected machine
(either Unix or MS-DOS or Windows) in order to execute successfully.

51

52

CHAPTER 4. ESROS PROGRAMS

-

I nvoker Performer

(a) Same machine

Performer

i

L - - -
} Network f

(b) Separate machines

Figure 4.1: Unix ESROS Processes.

4.3. THE ESROS SERVICE PROVIDER 53

r—— - - - - — — — A r—— - - - - — — — il
| Machine #1 | | Machine #2 |
I I | I
I I | I
| I nvoker/ | | Performer/ |
| ESROS | | ESROS |
I I | I
I I | I
Lo—- - J L _I
¢ Network f

Figure 4.2: MS-DOS/Windows ESROS Processes

4.3 The ESROS Service Provider

There is just one ESROS service provider program - the Unix ESROS-Daemon. Under MS-DOS and Windows the
ESROS service provider entity is linked with the various ESROS users at build-time.

4.3.1 Unix

esros [-p port] [-s socket] [-c configfile]
[- o outlogfile] [-T module,mask ...]

This command is described in detail in its man page. See Appendix C.

The following listing describes the format of the esros configuration file which is specified with the -c command
line option. In the absence of the -c option esros looks for the file esrop.ini in the same directory as the esros binary.
Note that command line options, when present, override their configuration file counterparts.

4.3.1.1 Running esros under Unix

First go to the root directory of the ESROS source tree and execute the following command:
source sourceme.csh

Then go to the directory containing shell scripts for running programs and start ESROS using the shell script
runEsros.sh. You may first wish to edit this script to enable tracing or PDU logging. (See Section 4.8 for more
information on tracing and logging.) Do this for both machines if you are running the Invoker and Performer in
isolation.

The shell script will prompt you to take further action to display the trace output. This involves running the Unix
tail utility on the trace file. You may also wish to display either of the PDU transaction logs by running esropscop as
described in Chapter 4.

Next, proceed to one of the following three sections for instructions on how to run the test itself.

54 CHAPTER 4. ESROS PROGRAMS

4.3.2 MS-DOS/Windows

As discussed previously, the ESROS provider does not execute as a separate task under MS-DOS/Windows. Rather, it
is linked at build-time with the various user programs. However, the command line options for the Unix version still
apply. They are simply entered on the command line of the user program along with that program’s specific options.
Again, refer to the esros man page in Appendix C for a discussion of the command line options for esros. The MS-
DOS/Windows ESROS provider also uses the esros configuration file in the same manner as the Unix implementation.

4.4 Service User Programs

This section describes the ESROS user programs that were developed to support testing of ESROS installations.

There are three groups of test utilities that are ported to both Unix and MS-DOS/Windows. Under Unix, these
are known as ops_xmpl (single operation invoker/performer), stress (Stress Tester), and tester (ESROS Scenario Inter-
preter).

e ops_xmpl - quick test, a simple/single operation
e stress - stress tester, repetitive operations (stress_i/stress_p)

e tester- scenario interpreter, complex transactions (esrossi)

Under MS-DOS/Windows these utilities are linked to the ESROS provider program at build-time. (These so-called
stand alone versions of the user programs also exist under Unix for test purposes.)

4.4.1 ops_xmpl

ops_xmpl invoker and performer programs invoke and perform a single operation respectively.

4.4.1.1 Unix

Single Operation Invoker:

invoker -1 localEsroSapSel -r remoteEsroSapSel -p remotePortNu
-5 pubQueueName -n remoteIPadr [-T <module_name>,<bit_mask>]

Single Operation Performer:

performer -1 localEsroSapSel -s pubQueueName [-T <module_name>,<bit_mask>]

4.4.1.2 MS-DOS/Windows

Single Operation Invoker:

invoker -1 localEsroSapSel -r remoteEsroSapSel -p remotePortNu
-s pubQueueName -n remotelIPadr -o outfile -e errfile
[-T <module_name>,<bit_mask>]

Single Operation Performer:

performer -1 localEsroSapSel -s pubQueueName -o outfile -e errfile
[-T <module_name>,<bit_mask>]

4.5. SUPPORT PROGRAMS 55

4.4.2 stress

stress is very similar to ops_xmpl except that it repetitively invokes and performs the same operation every delay
milliseconds. Also, the invoker performs cumulative error reporting every reportPeriod milliseconds to outfile, which
defaults to stdout and can be set to a file. See the previous section for a discussion of the other options.

4.4.2.1 Unix

Stress Tester Invoker:

stress_i -1 localEsroSapSel -r remoteEsroSapSel -p remotePortNu
-s —o logfile pubQueueName -n remotelIPadr -d delay -t reportPeriod
-0 logFile [-T <module_name>,<bit_mask>]

Stress Tester Performer:

stress_p -1 localEsroSapSel -s pubQueueName [-T
<module_name>, <bit_mask>]

4.4.2.2 MS-DOS/Windows

Stress Tester Invoker:

stress_i -1 localEsroSapSel -r remoteEsroSapSel -p remotePortNu -s
pubQueueName -n remoteIPadr -d delay -t reportPeriod -o logFile
[-T <module_name>,<bit_mask>]

Stress Tester Performer:

stress_p -1 localEsroSapSel -s pubQueueName [-T <module_name>,<bit_mask>]

4.4.3 Tester

Tester (also called esrossi) is the ESROS scenario interpreter. The same program is used as both the Invoker and
the Performer. The program reads scenario files that contain sequences of commands that result in ESROS primitive
invocations. The scenarios themselves are discussed in greater detail in the next sections.

4.4.3.1 Unix

esrossi [-d scenariosDir] [-T <module_name>, <bit_mask>]

4.4.3.2 MS-DOS/Windows

esrossi [-d scenariosDir] [-o outfile] [-e errfile]
[-T <module_name>,<bit_mask>]

4.5 Support Programs

4.5.1 esropscop
This Program is used to interpret and display the ESROS protocol log file.

esropscop esroslog.pdu

56 CHAPTER 4. ESROS PROGRAMS
4.6 Running the Test Programs

4.6.1 Unix
4.6.1.1 ops_xmpl

Go to the directory containing the shell scripts for running programs. There you will find the shell scripts runExam-
plePer.sh and runExamplelnv.sh . These scripts are used to execute single operation performer and invoker, respec-
tively. Edit these files to enable any desired tracing options. (Do this on both machines if running the Invoker and
Performer in isolation.) Also, be sure to specify the correct remoteEsroSapSel and remoteIPAdr in runExamplelnv.sh.
For example,

#

#runExampleInv.sh

#

$BINDIR/bin/invoker -1 12 -r 15 -p 2002 -s /tmp/SP

-n 198.62.92.28 -T G_, ffff -T ESRO_, ffff -T IMQ_,ffff
-T SCH_,ffff -T FSM_,ffff

#

#runExamplePer.sh

#

SBINDIR/bin/performer -1 15 -s /tmp/SP -T G_, ffff
-T ESRO_, ffff -T IMQ , ffff

In this case 198.62.92.28 is the IP address of the machine on which the Performer and its copy of ESROS will
execute.

Also, note that the remote and local SAP selectors of the Invoker and Performer, respectively, match, i.e. the -1 15
option in the Performer corresponds to the -r 15 option in the Invoker.

Once the shell scripts are correct, execute the Performer script and then the Invoker.

4.6.1.2 stress

Go to the directory containing the shell scripts for running programs. There you will find the shell scripts run-
StressPer.sh and runStressInv.sh. These scripts are used to execute stress_p and stress_i, respectively. Edit these files
as necessary. Start the Performer and then the Invoker.

4.6.1.3 esrossi

As stated earlier, there is just one esrossi program which serves as both invoker and performer, depending on the
contents of the scenario file given to it. The scenario files are located in the scenarios directory. For each scenario
there are two files, an invoker and a performer. For instance, inv1001 and perf1001 are invoker and performer scenarios
respectively. For each scenario that you wish to run, you must edit the Invoker file, changing the remote IP address to
match that of the machine on which you will execute the Performer script. In most of the scripts you must change the
IP address in multiple locations.

Once you have edited the scenario files, go to the directory containing the shell scripts for running programs. You
may edit the shell script runEsrossi.sh to specify any trace options that you wish. Then, start the Performer and the
Invoker using the shell script. In both cases you will be prompted to enter the name of the scenario file. Enter the full
path name of the file, Performer first (perfxxxx) and then Invoker (invxxxx).

4.7. SENARIOS 57

4.6.2 MS-DOS/Windows

The MS-DOS/Windows versions of the test utilities behave in a manner very similar to that of their Unix counterparts.
However, as noted above, the test utilities are bound to ESROS at build time and the Invoker and Performer cannot both
execute simultaneously on the same machine. So, it is not necessary to first start ESROS. Simply run the application
program. It is still necessary, however, to start the Performer first and then the Invoker.

The MS-DOS/Windows test utilities will interact with their Unix counterparts. So you may run a given Performer
on a Unix machine and the Invoker on an MS-DOS/Windows machine, or visa-versa.

4.6.2.1 esros

Since ESROS is bound to the utilites, ESROS tracing and PDU logging are controlled from the utility’s command line
(and ini file).

4.6.2.2 ops_xmpl

Go to the group file containing icons for esros programs. There you will find icons that can run invoker and performer
programs. Edit these as you would under Unix. Note, however, that you may also specify the ESROS transaction log
file names here.

Start the Performer on one machine and the Invoker on another.

4.6.2.3 stress

Go to the group file containing icons for esros programs. There you will find icons that can run invoker and performer
programs. Edit these as you would under Unix. Note, however, that you may also specify the ESROS transaction log
file names here.

Start the Performer on one machine and the Invoker on another.

4.6.2.4 tester

The scenario files are located in the scnarios directory. Go to this directory and edit as you would under Unix.

Once you have edited the scenario files click on the scenario interpreter icon. You may edit the icon or ini file to
specify any trace options that you wish. Then, start the Performer on one machine and the Invoker on another. In both
cases you will be prompted to enter the name of the scenario file. Enter the full path name of the file, Performer first
(perfxxxx) and then Invoker (invxxxx).

4.7 Senarios

This section describes the format of an ESROS Scenario Interpreter (esrossi) scenario file.

Scenario files are normally written in pairs, one for the invoker and one for the performer. Scenario files are plain
files containing one or more commands which are described in detail in the following sections. Some of the commands
are used exclusively by performers or by invokers. Other commands may be used by either.

Scenarios are intended to be serial in nature with the major commands grouped in matching pairs. This means that
when an invoker issues an invoke request command, for instance, the performer should have an outstanding invoke
indication command whose parameters match those of the invoker’s. A mismatch either in the parameters or in the
type of the event expected by the performer results in a performer error.

When reading this section refer to ESRO Testing for more information.

4.7.1 Logging-Related Commands

Logging-related commands generate log messages and control the display of messages to the screen and the writing
of messages to files. These commands are used by both performers and invokers.

58 CHAPTER 4.

4.7.1.1 log

log <message>
message quoted string
DESCRIPTION
log prints log messages to stdout and/or an optional log file.
EXAMPLE

log "making an invoke request now"

4.7.1.2 logfile

logfile <filename>
filename quoted string
DESCRIPTION
logfile causes log messages to be copied to filename
EXAMPLE

logfile "1001.log"

4.7.1.3 (quiet

quiet
DESCRIPTION

quiet disables the display of log messages on the screen.
However, if a log file is open, messages are still written to it.

4.7.1.4 verbose

verbose
DESCRIPTION

verbose enables the display of log messages on the screen.
If a log file is open messages are still written to it.

4.7.2 Invocation-Related Commands

4.7.2.1 invoke request

ESROS PROGRAMS

invoke request <remsap> <remport> <ipaddr> <operationval> <encodetype> <data>

4.7. SENARIOS

remsap number

remport number

ipaddr dotted quad notation
operationval number

encodetype number

data quoted string

USED BY: invoker
DESCRIPTION

invoke request is used by an invoker to generate an
ESROS-INVOKE.request. The ESROS-INVOKE PDU is sent to a performer
listening to remsap. The performer verifies that operationval,
encodetype, and data match the values which it expects using the
invoke indication command, below. The esros provider associated with

the performer is located at ipaddr remport. Note that this is the only

command in which the IP address or remote port of either performer or
invoker are referred to. In all subsequent transactions relating to
this invoke request, the address and port are retained and reused by
the scenario interpreter.

EXAMPLE

invoke request 13 2002 198.62.92.10 2 0 "date"

4.7.2.2 invoke indication

invoke indication <operationval> <encodetype> <data>

operationval number
encodetype number
data quoted string

USED BY: performer
DESCRIPTION

invoke indication is used by a performer to receive an
ESROS-INVOKE.indication. The operation value, encoding type, and data
of the received ESROS_INVOKE PDU must match the operationval,
encodetype, and data, respectively, of the command in order for the
command to execute successfully. When a mismatch error occurs the
performer logs an error message. Also, if a different event is
received the program logs an error message.

EXAMPLE

invoke indication 2 0 "date"

59

60 CHAPTER 4.

4.7.3 Result-Related Commands
4.7.3.1 result request

result request <encodetype> <data>

encodetype number
data quoted string

USED BY: performer
DESCRIPTION

result request is used by a performer to issue an ESROS-RESULT.request
in response to the most recently received ESROS-INVOKE.indication. The
scenario interpreter uses the most recently received invocation ID to
generate the ESROS-RESULT PDU. The invoker verifies that encodetype
and data match the values which it expects using the result indication
command, below.

EXAMPLE

result request 0 "October 22, 1995"

4.7.3.2 result indication

result indication <encodetype> <data>

encodetype number
data quoted string

DESCRIPTION

result indication is used by an invoker to receive an
ESROS-RESULT.indication event. The encoding type, and data of the
received ESROS-RESULT PDU must match the encodetype and data,
respectively, of the command in order for the command to execute
successfully. When a mismatch error occurs the performer logs an error
message. Also, if a different event is received the program logs an
error message.

EXAMPLE

result indication 0 "October 22, 1995"
4.7.3.3 result confirmation

result confirmation

USED BY: performer

DESCRIPTION

ESROS PROGRAMS

4.7. SENARIOS

result confirmation is used by a performer to receive an
ESROS-RESULT.confirm event. If a different event is received the
performer logs an error message.

EXAMPLE

result confirmation

4.7.4 Error-Related Commands
4.7.4.1 error request

error request <encodetype> <errorvalue> <data>

encodetype number
errorvalue number
data quoted string

USED BY: performer
DESCRIPTION

error request is used by a performer to send an ESROS-ERROR.request in
response to the most recently received ESROS-INVOKE.indication. The
scenario interpreter uses the most recently received invocation ID to
generate the ESROS-ERRO PDU. The invoker verifies that encodetype,
errorvalue, and data match the values which it expects using the error
indication command, below.

EXAMPLE

error request 0 2 "Unknown encoding type"

4.7.4.2 error indication

error indication <encodetype> <errorvalue> <data>

encodetype number
errorvalue number
data quoted string

USED BY: invoker
DESCRIPTION

error indication is used by an invoker to receive an
ESROS-ERROR.indication event. The encoding type, error value, and data
of the received ESROS-ERROR PDU must match the encodetype, errorvalue,
and data, respectively, of the command in order for the command to
execute successfully. When a mismatch error occurs the invoker logs an
error message. Also, if a different event is received the program logs

61

62 CHAPTER 4.

an error message.
EXAMPLE

error indication 0 "Unknown encoding type"

4.7.4.3 error confirmation

error confirmation

USED BY: performer

DESCRIPTION

error confirmation is used by a performer to receive an error
ESROS-ERROR.confirm event. If a different event is received the
performer logs an error message.

EXAMPLE

error confirmation

4.7.5 General Commands

These commands may be used either by an invoker or performer.

4.7.5.1 sapbind

sapbind <localsap> <func_unit>

localsap number
func_unit 213
DESCRIPTION

sapbind is used by a performer or an invoker to establish a local
service access point (SAP) with ESROS. localsap specifies the SAP
number. func_unit specifies the type of handshaking that is in effect
for the SAP. 2 specifies two-way handshaking. 3 specifies three-way
handshaking. Note that in order for an invoker and performer to
interact they must do so via local SAPs that use the same type of
handshaking. Furthermore, once a SAP is created the handshaking type
stays in effect until the SAP is released.

EXAMPLE

sapbind 12

ESROS PROGRAMS

4.7. SENARIOS

4.7.5.2 saprelease

saprelease <localsap>
localsap number
DESCRIPTION

saprelease is used by a performer or an invoker to release an ESROS
service access point that was previously opened by a sapbind command.

EXAMPLE
saprelease 12
4.7.5.3 failure indication
failure indication <value>
value number

DESCRIPTION
failure indication may be used by either a performer or an invoker to
receive an ESROS-FAILURE.indication event. The reported error value
must match value in order for the command to execute
successfully. When a mismatch occurs the program logs an error
message. If a different event is received the program logs an error
message. value may be any one of the following tokens:

TRANSFAIL

LOCRESOURCE

USERNOTRESP

REMRESOURCE
EXAMPLE
failure indication TRANSFAIL
4.7.5.4 rawevent
rawevent <eventnumber>

eventnumber number

DESCRIPTION
rawevent checks to see if an arriving event is of type eventnumber. If
a mismatch occurs the program generates an error message to the

log. eventnumber may be one of the following:

/* Event Codes */

64 CHAPTER 4.

#define ESRO_E_BASE 200
#define ESRO_INVOKEIND (ESRO_E_BASE+0)
#define ESRO_RESULTIND (ESRO_E_BASE+1)
#define ESRO_ERRORIND (ESRO_E_BASE+2)
#define ESRO_RESULTCNF (ESRO_E_BASE+3)
#define ESRO_ERRORCNF (ESRO_E_BASE+4)
#define ESRO_FAILUREIND (ESRO_E_BASE+5)
EXAMPLE
rawevent 202
4.7.5.5 delay
delay <seconds>

seconds number

DESCRIPTION

delay is used by a performer or an invoker to pause for seconds before
executing the next command in the script.

EXAMPLE
delay 2
4.7.6 Scenario File Manipulation Commands

4.7.6.1 include

include <filename>
filename quoted string
DESCRIPTION

include is used by a performer or invoker to include text from another
file, much like a C language #include directive.

EXAMPLE

include "perf2003"

4.7.6.2 path

path <name>
path quoted string

DESCRIPTION

ESROS PROGRAMS

4.8. TRACING 65

path sets the name of the default directory for scenario files. This
directory is used for any subsequent include commands. The path
command overrides the equivalent esrossi command line argument.

EXAMPLE

path "/lib/scenarios"

4.8 Tracing

ESROS programs use two different types of tracing in order to facilitate debugging and integration. The first type of
tracing is the Open C Platform (OCP) Trace Module tracing. The second type is physical data unit (PDU) transaction
logging used exclusively by the provider program. (Remember, however, that under MS-DOS, the provider and user
programs are one and the same. So a given test program under MS-DOS will have both types available.)

4.8.1 OCP Trace Module Tracing

The Trace Module (TM) selectively and dynamically generates trace messages in order to facilitate program de-
bugging. Within OCP, each module may have its own particular degree of TM tracing enabled at run-time. Some
ESROS-specific modules also use TM tracing in a similar manner.

Tracing may also be globally enabled or disabled at compile time without performing any changes to the source
code, other than changing the value of a defined value in a single include file. This allows fully debugged programs to
occupy minimal space.

For a more complete discussion of the Trace Module and of OCP see the Open C Platform document [2].

4.8.1.1 Run Time Control of TM_

When starting an ESROS program, if you wish to enable trace options for a module, you should specify on the
command line the following:

-T <module_name>, <hex_bits>

where jmodule_name; is a valid OCP or ESROS module and jhex_bits;, is a hexadecimal value specifying which
trace bits for that module to enable. Multiple sets of -T options may be specified to enable tracing for more than one
module. For example:

esros -T LOPS_,ffff -T IMQ_,3

General usage dictates that lower-order bits produce less output. The lowest-order bits are often useful even during
normal operation of the application. Bits above the first byte are reserved for trace options that provide a lot of output,
such as dumping of complete PDUs.

4.8.1.2 TM Output

The following example illustrates the format of a trace message. Each trace message contains the source file name and
line number from which the message was generated, followed by a variable number of user data fields.

clinvktd.c, 197: fsm_ePass: machine=0x60e38 evtId=0x8

66 CHAPTER 4. ESROS PROGRAMS

4.8.2 PDU Transaction Logging

In PDU transaction logging, each ESRO network transaction performed by the ESROS provider is logged to one of
two files in a compressed, binary format that may be subsequently displayed using a special purpose display utility.
The first of the two files contains the history of all transactions while the second contains only those that indicate the
occurrence of some sort of error.

PDU transaction logging is enabled on the ESROS command line in the following manner:

esros [-o <all_file name>] [-e <error_file_ name>]

Note that either type of logging is purely optional. Thus, the -o option could be used during a debug session while
the -e option might be used to log spurious errors that occur during normal operations.

4.8.2.1 PDU Transaction Log Display

PDU transaction logs may be displayed using the utility esropscop in the following manner:
esropscop —-f <file_name>
A sample output from this program is shown below.

SYSENV=/h9/neda/sw/curenv.sol2/results/systems/arash

Time TSDU Tsiz Loc Rem Ref Dst Src OpVal Encod Parameter

The contents of this file are described in appendix D ESRO Program man Pages (esropscop man page).

4.9 Implementation Notes

This section addresses implementation-specific aspects of the ESROS programs.

4.9.1 Differences Between Unix and MS-DOS Portations

The major differences between the Unix and MS-DOS/Windows portations are isolated to several discrete locations
in the code. These differences are discussed in the following sections.

4.9.1.1 Multiple Processes vs. Single Process

The most significant difference between the two portations lies in the manner in which an ESROS user communicates
with ESROS itself. Under Unix, ESROS runs as a separate task. There may thus be one or more ESROS users that
invoke ESROS primitives via an interprocess communication mechanism provided by the UPQ_BSD_ module.

MS-DOS, of course, does not support such a mechanism. Therefor, ESROS and ESROS users are linked together
as single executable. This is the same for Windows. As explained in the previous sections, ESROP has a call-back
interface to the upper layer. However, there are two different API’s available to the ESROS user (see Section, ESROS
API). In the case of applications that use the Call-back API, the inter-process communication module is eliminated for
one-process model. In the case of Function Call API, in place of the interprocess communication mechanism, there is
a a module that emulates the UPQ_BSD_ facilities. This module, named UPQ_SIMU_, uses disk files to simulate the
interprocess communication mechanism.

The developer of an ESROS application who has to port between these two environments will be chiefly concerned
with the ESROS user’s make file. Under Unix and for two process model, the ESROS user application is linked to the
UPQ_BSD._ library. Under MS-DOS it is linked to the UPQ_SIMU_ library. In addition, the MS-DOS user must link
to the libraries containing the ESROS code. The following excerpts illustrate this principle.

4.9. IMPLEMENTATION NOTES 67

Libraries used building Unix ESROS user application as a separate process

USER_SH = $(LIBS_PATH)/esro_ushcb.a
UPQ = $(LIBS_PATH) /upg_bsd.a
GF = $(LIBS_PATH)/gf.a

Libraries used building MS-DOS ESROS user application in one process with Function Call API

USER_SH = $(LIBS_PATH)\esro_ush.lib
PRVDR_SH = $(LIBS_PATH) \Sp_shell.lib
UPQ_SIMU = $(LIBS_PATH)\upg_simu.lib
UDP_IF = $(LIBS_PATH) \udp_pco.lib
ESROP_SH = $(LIBS_PATH) \esrop_sh.lib
PROT_ENG = $(LIBS_PATH) \esroprot.lib
GF = $(LIBS_PATH)\gf.lib

Libraries used building MS-DOS ESROS user application in one process with Call-back API

UDP_IF = $(LIBS_PATH) \udp_pco.lib
ESROP_SH = $(LIBS_PATH) \esrop_sh.lib
PROT_ENG = $(LIBS_PATH) \esroprot.lib
GF = $(LIBS_PATH)\gf.lib

SF = $(LIBS_PATH)\sf.lib

FSM = $(LIBS_PATH) \fsm.lib

4.9.1.2 Scheduler Module (SCH.)

SCH_ module can be used for scheduling the program’s modules.

One of the common usages of SCH_ module is scheduling of further processing within the same module. This
happens most often to prevent re-entry to non-re-entrant code. For more information about the Scheduler module refer
to OPEN C Platform document.

4.9.1.3 Timer Module (TMR.)

The TMR_ module defines a model and an interface for providing timer facilities to Open C Layers, regardless of the
environment, provided that all implementations of the TMR_ module conform to the interface defined here. For more
information about the Timer module refer to OPEN C Platform document.

49.14 FLEX & BISON

FLEX is a DOS portation of the lex utility commonly found on Unix systems. BISON is a DOS portation of the yacc
utility. These utilities are used in the compilation of the ESROS Scenario interpreter, ESROSSI.

68

CHAPTER 4. ESROS PROGRAMS

Chapter 5

ESROS Testing

This chapter describes the testing methodologies and tools used to test ESROS implementations.

5.1 Conformance and Interconnection Testing Overview

This section describes conformance testing and interconnection testing. Much of the following has been extracted
from [ISO/IEC 9646].

Conformance testing has two components: static conformance tests and dynamic conformance tests. Static con-
formance is a paper evaluation of a layer implementation’s ability to meet the conformance requirements. It uses the
information provided by the implementation supplier to determine the capabilities of the implementation. For exam-
ple, a manufacturer may choose to not implement an optional feature of a protocol. In such a case the manufacturer’s
release notes would clearly indicate this feature is not supported, and therefore tests exercising this function would not
be run against the device. Dynamic conformance is the actual execution of a test suite to exercise the implementation,
observing its behavior under a variety of conditions.

Interconnection tests, a subset of the Dynamic Conformance tests, are normally applied to implementations oper-
ating across a user-network boundary. They can also be used for network-to-network testing. This approach is not the
same as rigorous conformance testing, as defined by the [ISO/IEC-9646] standards and as generally used in the in-
dustry. But interconnection testing does increase the likelihood of implementations from two different manufacturers
successfully interoperating, both with the network and directly with each other. The difference between interconnec-
tion testing and conformance testing lies in the coverage offered by the tests run against the implementation.

Interconnection tests exercise an implementation in such a way as to cause it to exhibit some expected behavior
when using the network to communicate with a peer entity. Interconnection Tests do not test:

e That the device offers the user adequate service or performance

e That the device behaves correctly during error conditions which do not affect the network, but which may impact
user expectations.

5.2 Abstract Test Methods

This section summarizes the characteristics of various Abstract Test Methods (ATMs) currently recognized by [ISO/IEC-
9646] and presents concerns relevant to implementation manufacturers, vendors, test suite developers and test labora-
tories. This section does not explore novel testing approaches nor does it consider multi-layer ATM variants.

69

70 CHAPTER 5. ESROS TESTING

5.2.1 WhatIs an ATM?

An Abstract Test Method (ATM) describes a testing architecture, consisting of a lower tester, upper tester, and test
coordination procedures, and their relationships to the test system, the tester (LT), and the System Under Test (SUT).
The testing architecture is a generalized model based on the Open Systems Interconnection (OSI) Reference Model
layered approach to protocol architecture. Since the OSI model does not impose a particular scheme on the imple-
mentation, the test method cannot assume the availability of functions or control beyond those required by a protocol
specification. Hence the testing method is an ’abstract” test method based on the OSI Reference Model. The test suite
developers must ensure that a model used for developing a test suite and test cases is realizable in a real test execution
environment.

An ATM is described in terms of the outputs observed from the Implementation Under Test (IUT) and inputs that
can be controlled. Each ATM determines the Points of Control and Observation (PCOs) and test events (Abstract
Service Primitives (ASPs) and Protocol Data Units (PDUs) to be used in an abstract test case.

5.2.1.1 The ATM/ATS Relationship

Abstract Test Suites are Abstract Test Method specific. For each ATM, there exists a unique ATS defining the PCOs,
ASPs and PDUs used for observing and controlling an implementation’s behavior during testing. As an example, the
Abstract Test Suite written based on the Remote Abstract Test Method differs from an Abstract Test Suite written
based on the Local Abstract Test Method. One difference is that the Remote method uses one PCO at the Lower
Service Boundary, whereas the Local method uses two PCOs; one at the lower service interface, and the other at the
upper service interface

5.2.1.2 Applicability

The Abstract Test Methods discussed here are applicable to protocols adhering to the principles of layering as defined
in the ISO OSI Reference Model [ISO-7498] and [CCITT-X.200]. The test methods identified will be considered
for Interconnection and Conformance Testing of the ESROS protocols. The information regarding ATMs has been
extracted from [ISO/IEC-9646].

5.2.2 Remote Test Method

The Remote test method is illustrated in Figure 5.1 and is characterized by the following:
e A single PCO located at the LT in the Test System
e Access to an Upper Tester is not formally required

Test Coordination Procedures between the Test System LT and the UT (if one exists) are implied or defined in an
ad hoc manner. Typically coordination is achieved by a human user intervening at a system console.

Note that it may not always be possible to realize the required test coordination between the Test System and the
SUT at the UT service boundary, however:

e It may be impossible to initiate some test cases from the LT because of Service Provider restrictions or limita-
tions

It is the simplest ATM

It makes no special demands on the SUT

It makes no assumptions about the internal design of the SUT or the IUT within Service Provider PDUs

It essentially treats the SUT as a black box

e It is the least intrusive of the methods presented.

5.2. ABSTRACT TEST METHODS

/SUT

Underlying Networ k

Test System \

Figure 5.1: Remote Test Method

71

72 CHAPTER 5. ESROS TESTING

/ SUT Test System \

TM-PDUs
uTt Test Coordination
Procedures

A

LT

A

PDUs

A

lUT
PCO | ASPs

Underlying Networ k

-

Figure 5.2: Coordinated Test Method

5.2.3 Coordinated Test Method

The Coordinated test method is illustrated in Figure 5.2 and is characterized by the following:

o A single PCO (located at the Lower Tester (LT) in the Test System)
e No access to an Upper Tester (UT) is required

e Test Coordination Procedures between the Test System Lower Tester and the SUT are formalized by the exis-
tence of a Test Management protocol. The protocol allows the tester to control SUT actions, events, messages
and report on events coming from the UT (if one exists). To reduce complexity some have proposed sending
TM-PDUs as user data of the protocol under test.

Note that even with the TM protocol, it may be difficult or impossible to realize the required test coordination
between the Test System and the SUT at the UT service boundary. Service Provider PDUs

It may be impossible to initiate some test cases from the LT because of Service Provider restrictions or limitations

Additional coordination via the TM protocol implies the addition of new functionality in the SUT. A protocol
independent TM protocol (specified by [ISO/IEC-9646]) does not yet exist. Use of this ATM would require the design
and development of customized TM protocols for each protocol using the coordinated test method

The internal SUT design must consider the TM protocol

This method accesses the SUTs internals and could be described as glass box testing

Increases the complexity of the ATS (upper test must be tested to verify that it conforms to the TM protocol
specification).

5.2. ABSTRACT TEST METHODS 73

/ SUT Test System \

) Test Coordination

Procedures
LT

A

PDUs
IUT PCO | ASPs

A

Under lying Networ k

-

Figure 5.3: Distributed Test Method

5.2.4 Distributed Test Method

The distributed test method is illustrated in Figure 5.3 and is characterized by the following:

e It has two PCOs (one at Lower Tester in the Test System the other at the Upper Tester in the SUT) Service
Provider PDUs

o Access to UT (Upper service boundary of IUT) is required

o Test Coordination Procedures between the Test System LT and the UT are more rigorous. Explicit control and
observation of ASPs is possible. ATS makes explicit use of these ASPs. Test Coordination Procedures require
either the use of a human operator or the use of a standardized programming language interface. In most cases
a human user acts as the interface between the Test System and the UT. The interface is done using a system
console and/or by telephone with the remote Test System operator.

Note that it may not always be possible to realize the required test coordination between the Test System and the
SUT at the UT service boundary, however:

e It may be impossible to initiate some test cases from the LT because of Service Provider restrictions or limita-
tions

e Increases the complexity of the ATS (ASPs in the SUT must be specified in the ATS)

e Access to Upper service interface is better than that of the remote test method

74 CHAPTER 5. ESROS TESTING

/ Test System \

PCO %
ASPs Ut
Test
Coordination
Procedures

SUT vy

LT

A

PDUs
[UT PCO | ASPs

Y

Underlying Networ k

-

Figure 5.4: Local Test Method

e Easier to implement than the local test method (see below)

e Synchronization is difficult.

5.2.5 Local Test Method

The Local test method is illustrated in Figure 5.4 and is characterized by the following:
o [t has two PCOs (one at LT in the Test System, the other at the UT in the SUT)
e Because both the UT and LT are located in the Test System, two hardware interfaces to the SUT are required
o Additional functionality must be added to support the UT hardware interface
e Increases the complexity of the ATS

e Capable of exercising any protocol state transition (transient states excluded).

It may be impossible to initiate some test cases from the LT because of Service Provider restrictions or limitations.
The Local test method is often described as having no practical application.

5.3. THE ESROS TEST TOOLS 75

5.3 The ESROS Test Tools

The Neda ESROS Test Tools are a series of programs and related data files that include a scenario interpreter, a group
of scenario files, an exception generator, and an exception generator scope program. Installation and operation of these
programs is described in detail in ESRO Programs and in ESRO Program man Pages.

The Test Tools are designed to run on Solaris 5.4. (The scenario interpreter has also been ported to MS-DOS.) Each
of the tools is implemented as a separate process. Interprocess facilities available under Solaris are used to establish
channels between processes at run-time. The individual components are:

e csrossi - The scenario interpreter. An application that reads and executes scenario files.

e Scenario files - Contain descriptions of the invocations and requests that are to be sent and the indications and
confirmations that the implementation expects to receive.

e Irexgen - The exception generator. A program that observes and records Protocol Data Unit (PDU) traffic
between the ESROS and the Transport Program. The exception generator is also used to introduce intentional
errors into PDUs that consequently produce observable results.

e esropscop - The exception generator scope program. A formatting program that processes the binary files
generated by the exception generator and produces a human-readable list of the content of ESROS Protocol
Data Unit traffic.

5.3.1 How the Test Tools Work

Each element of the test tools operates as a separate process, as shown in Figure 5.5

esrossi, which is run both locally and remotely in parallel, reads commands in the Test Center (local) and Imple-
mentation Under Test (remote) scenario files.

Commands in the Test Center and Implementation Under Test scenario files are synchronized so that, together, they
test a feature or a set of features of the ESROS protocol. Commands in scenario files are implemented sequentially.

Irexgen, which is run locally, operates between the ESROS and Transport layers. Irexgen establishes an interpro-
cess communication channel between itself and esrossi, which can also control the behavior of Irexgen.

5.4 Test Objectives

5.4.1 Valid sequences of primitives

Such sequence of primitives is valid based on the protocol specification. The behavior of system for valid sequence of
primitives is tested.

5.4.2 Invalid sequences of primitives

Such sequence of primitives is invalid based on the protocol specification. The behavior of system for invalid sequence
of primitives is tested.

5.4.3 Parameter variations on primitives

Functionality of the system for different variations of parameters is tested.

5.4.4 Stress Tests

System is put under stress and functionality of system under stress is tested.

76

CHAPTER 5. ESROS TESTING

/

Implementation Under Test

-

ESROS
Primitives

ESROS
Implement.

A

TCP/UDP

ESROSPDUs

Test Center \

£SRO;
PDUs

- =

ESROS
Primitives

i

Filtered
ESROS PDUs

-_>

ESROS PDUs

TCP/UDP

Underlying Network

|:| Layer Under Test

[] Test Tool

. System Provided

[

Figure 5.5: ESROS Test Tools

5.5. TEST CASES

5.4.5 Multiple results

Multiple results is sent by performer to test the behavior of the invoker in the case of duplicate PDU’s.

5.5 Test Cases

5.5.1 Valid sequences of primitives
5.5.1.1 1.001

invoker invokes an operation receives result

55.1.2 1.002

invoker invokes an operation, expects error response

55.1.3 1.003

invoker invokes an operation receives failure (reason 1)

5.5.14 1.004

invoker invokes an operation receives failure (reason 2)

55.1.5 1.005

invoker invokes an operation, Doesn’t receive any response (retransmission)

5.5.2 Invalid sequences of primitives
5.5.21 2.001

No sapbind

5.5.2.2 2.002
Invalid SAP

55.2.3 2.003

Invalid IP or no provider at dest

5.5.24 2.004

Invalid port no

55.2.5 2.005

Invalid op code

55.2.6 2.006

Invalid/unknown encoding type

78

5.5.3 Parameter variations on primitives
5.5.3.1 3.001

invoker invokes multiple operation, expects result

5.5.3.2 3.002

invoker invokes multiple operation, expects result and error

5.5.3.3 3.003

invoker invokes multiple operation, expects result and error

5.5.4 Stress Tests
5.54.1 4.001

invoker invokes operation with large data (100 bytes), expects result

5542 4.002

invoker invokes operation with large data (1K bytes), expects result

5.54.3 4.003

invoker invokes 50 operations, expects 50 results

5544 4.004

invoker invokes 100 operations, expects 100 results

5.54.5 4.005

invoker invokes 600 operations, expects 600 results

5.54.6 4.006

invoker invokes operation with 1K bytes data, expects result

554.7 4.007

invoker invokes operation with large data (2K bytes), expects result

554.8 4.008

invoker invokes 2000 operations, expects 2000 results

5549 4.009

invoker invokes operation with 3K bytes data, expects result

CHAPTER 5. ESROS TESTING

5.6. EXAMPLE 79

5.5.5 Multiple Results
5.5.5.1 5.001

invoker invokes operation, receives multiple results for the same operation.

5.6 Example

The following pair of scenario files illustrates the structure and syntax of ESROS scenario files.

The test case is named 1.001. This numbering is simply a convention.

There is an invoker script and a performer script. The role of invoker or performer may be assumed by either the
IUT or the LT.

The invoker issues, and the performer expects to see, an ESROS-INVOKE.request PDU containing the string
”date”. The performer responds with, and the invoker expects to see, an ESROS-RESULT.request PDU containing the
string ”Feb 29, 1996”. The performer also checks for an ESROS-RESULT.confirm event.

log L, n
log "inv1.001"

log "--- invoker invokes an operation"
log "--- receives result"

log n_ n

saprelease 12

sapbind 12 3

invoke request 13 2002 198.62.92.5 5 5 "date"
result indication 2 "Feb 29, 1996"

saprelease 12

log " "
log "perfl.001"

log "--- performer performs an operation"
log "--- receives result"

log "-mmmmmm e e "

saprelease 13

sapbind 13 3 invoke indication 2 2 "date"
result request 2 "Feb 29, 1996"

result conformation

saprelease 13

80

CHAPTER 5. ESROS TESTING

Appendix A

Acronyms

ASN.1 Abstract Syntax Notation One (ASN.1)
FSM ESROS Finite State Machine.
IP-Message InterPersonal Message

ESROS Efficient Short Remote Operation Services
ESROP ESROS Protocol Engine

ESRO-SAP ESROS Service Access Point.

MD Management Domain

MH Message Handling

MHS Message Handling System

MS Message Store

MT Message Transfer

MTA Message Transfer Agent

MTS Message Transfer Service

SEQ_ Sequence Module

TMR_ Timer Management Module

T™M. Trace Module

DU_ Data Unit Management Module

81

82

APPENDIX A. ACRONYMS

Appendix B

ESRO API Example Usage

B.1
B.2
B.3
B.4

invoker.c
invoksch.c
performer.c

perfsch.c

83

84

APPENDIX B. ESRO API EXAMPLE USAGE

Appendix C

ESRO Program man Pages

esros (1) User Commands esros (1)

NAME
esros — Efficient Short Remote Operation Services Engine

SYNOPSIS
esros [-p port] [- s socket] [- o logfile] [-
T module,mask ...]

DESCRIPTION
esros implements the ESROS protocols as specified in LSM
Protocol Specification Version 1.0.

OPTIONS
-p port This option sets the port number of ESROS. If
this option 1is not given, then the default port
number is 2002.

-s socket This option applies to UNIX version of esros
only. socket is the name of socket used for com-
munication between esros and application program.
The default value of socket is /tmp/SP.

-0 logfile
This option activates the PDU logging of esros.
The incoming and outgoing PDUs are logged in log-
file

-T module,mask
This option activates the tracing capability of
esros (if it 1is a version with built-in tracing
feature). module is the name of a module that can

85

86

APPENDIX C. ESRO PROGRAM MAN PAGES

be one of the following:

ESRO_ (User Shell), LOPS_ (Provider Shell), ESROP_
(Protocol Engine), FSM_ (Finite State Machine),
IMQ_ (Inter Module Queue), SCH_ (scheduler), DU_
(Data Unit) or UDP_.

mask is a four digit hexadecimal number (0 to
ffff) which controls different levels of trace
output messages. ffff means a full trace output
for the given module.

EXAMPLES

The following example:

example% esros -o out.log

SunOS 5.4 Last change: Sep 28, 1995 1

€Sros

FILES

(1) User Commands esros (1)

enables PDU logging and writes the log of incoming and out-
going PDUs in the out.log file. The out.log format is binary
and esropscop utility program is used to convert the log data
to a readable format.

The next example activates the trace log of esros and gen-
erates the trace output of the FSM_ module (Finite State

Machine) :

example% esros -T FSM_, ffff

none

SEE ALSO

esropscop (1)

AUTHORS
Neda Communications, Inc. —-- Mohsen Banan, Kamran Ghane
REVISION
RCS Revision: $Id: esros.l,v 1.1 1995/10/03 07:03:26 kamran
Exp $
SunOS 5.4 Last change: Sep 28, 1995 2
esropscop (1) User Commands esropscop (1)
NAME

esropscop - Display PDU log file created by esros

SYNOPSIS
esropscop [-f follow] [-1 line length] [-h] filename

DESCRIPTION

87

88 APPENDIX C. ESRO PROGRAM MAN PAGES

esropscop displays a readable format of lros log file on the
standard output.

The column headers of the esropscop output have the following

meanings:

TSDU Transport Service Data Unit is a counter for all
incoming and outging PDUs.

Tsiz size of the PDU.

Loc Local

Rem Remote

Ref Reference Number of the operation

Dst Destination Service Access Point

Src Source Service Access Point

OpVal Operation Value

Encod Encodingtype

Parameter Parameter of the operation

OPTIONS

-f follow With the -f (follow) option, the program will not
terminate after the line of the input-file has
been copied, but will enter an endless loop,
wherein it sleeps for a second and then attempts
to read and copy further records from the log-
file. Thus it may be used to monitor the growth of
the log file that is being written by esros pro-
cess.

-1 line_length
This option sets the line length of the output.
Each PDU 1is described on one line and the last
column of the line is the PDU data. PDU data
display 1s cut based on the line length. If this
option is not given, the default value of line

Sun Microsystems Last change: Sep 28, 1995 1

esropscop (1) User Commands esropscop (1)

length is 80.

-h When this option is given a complete display of
PDU data in hexadecimal format is given for each
PDU.
EXAMPLES

The following example:

example% esropscop -1 132 esros.log

displays the esros.log file and the maximum length of each
line of output data is 132.

FILES
none

SEE ALSO
esros (1)

AUTHORS
Neda Communications, Inc. —-- Mohsen Banan, Kamran Ghane

REVISION
RCS Revision: $Id: esropscop.l,v 1.1 1995/10/03 07:03:22 kam-
ran Exp $

89

90

APPENDIX C. ESRO PROGRAM MAN PAGES

Sun Microsystems Last change: Sep 28, 1995 2
esrossi (1) User Commands esrossi (1)
NAME
esrossi - Efficient Short Remote Operation Services Senario
Interpreter
SYNOPSIS
esrossi [-T module,mask]
DESCRIPTION

esrossi interprets the scenario files and invokes opera-

tions. Invocations and

expected results are defined in

invoker scenario file. Expected invocation and their results
are defined in performer scenario file.

OPTIONS
-T module,mask

This option activates the tracing capability of

esros (if it

is a version with built-in tracing

feature). module is the name of a module that can
be one of the following:

ESRO_ (User Shell), LOPS_ (Provider Shell), ESROP_
(Protocol Engine), FSM_ (Finite State Machine),

IMQ_ (Inter Module Queue), SCH_ (scheduler), DU_

(Data Unit) or UDP_.

mask is a four

digit hexadecimal number (0 to

ffff) which controls different levels of trace

output messages.

ffff means a full trace output

for the given module.

EXAMPLES

The following example:

example% esrossi -T ESRO_,ffff

enables trace output of the scenario interpreter.

FILES
none
SEE ALSO
esros (1)
AUTHORS
Neda Communications, Inc. —-- Mohsen Banan, Kamran Ghane
REVISION
RCS Revision: $Id: esrossi.l,v 1.1 1995/10/03 07:03:30 kam-
ran Exp $

Sun0OS 5.4 Last change: Sep 28, 1995 1

91

92

APPENDIX C. ESRO PROGRAM MAN PAGES

Appendix D

Trace Bit Definitions

93

94

APPENDIX D. TRACE BIT DEFINITIONS

Module Trace Bit Mask (hex) Type of Tracing
Name
LOPS_ 0 0001 TM_ENTER
1 Set all levels of tracing
ESROP_ 0 0001 TM_ENTER
5 0020 TM_PDUIN
6 0040 TM_PDUOUT
10 0400 DU_MALLOC
461 Set all levels of tracing
ESRO_ 0 0001 TM_ENTER
1 0002 ESRO_TRPRIM
3 Set all levels of tracing
LOG_ 0 0001 TM_ENTER
1 Set all levels of tracing
ASN 0 0001 All ASN activity: formatting, parsing
1 Set all levels of tracing
DU_ 10 0400 All DU_ activity: allocate, free, link
400 Set all levels of tracing
FSM_ 2 0004 FSM_TMEXEC
3 0008 FSM_TMGEN
4 0010 FSM_TMFUNC
1C Set all levels of tracing
IMQ_ 0 0001 All IMQ_ activity: allocate, free, link
1 Set all levels of tracing
MM 1 0002 Error
3 0004 Normal activity
8 0100 PDU dump
106 Set all levels of tracing
SCH_ 0 0001 All Scheduler activity: queue manipulation, task execu-
tion
1 Set all levels of tracing
UDP_ 0 0001 All UDP_ activity: receive, bind
1 Set all levels of tracing

Table D.1: Complete List of Trace Bit Definitions

Appendix E

Neda PICS for ESROS

E.1 Introduction

The following pages are the Neda Protocol Implementation Conformance Statement (PICS) which is based on the
proposed PICS Proforma for ESROS [4]. All the tables appear here as they do in the Proforma, along with their
corresponding numbers. Additional comments and explanations are provided where necessary.

E.2 Identification

E.2.1 Supplier Identification

The supplier information is to be provided in the following way:

Supplier Address Neda Communications
17005 SE 31st Place
Bellevue, WA 98008 USA

Contact Name Mohsen Banan

Contact Address Same as above

Phone Number (425) 644-8026

Facsimile Number (425) 562-9591

e-mail Address sales@neda.com

E.2.2 Implementation Information
Implementation information shall be provided below

95

96

APPENDIX E.

NEDA PICS FOR ESROS

Name'

Neda’s implementation of ESROS

Version
Machine Configuration

1.06

Portable code
Existing Platforms:
Sun Sparc, Intel x86

Operating System

Portable code
Existing Systems:
Unix (Solaris), MS Windows

E.3 ESROS

E.3.1 ESROS Protocol Summary

Identification of the Protocol Spec-
ification

Efficient Short Remote Operations Protocol (ES-

ROP)

Protocol Version(s) supported

1.03

E.3.2 ESROS Protocol Capabilities
E.3.2.1 Overview of ESRO Services

] Item \ Protocol Capability Status | Reference Support

ESROS1 Does the IUT support Acknowl- | O 1028-3.1.2 Yes: x_No:__ X:__
edged Result Service Mode?

ESROS2 Does the IUT support Non- | O 1028-3.1.3 Yes: x_No:__ X:__
acknowledged Result Service
Mode?

ESROS3 Does the IUT support only the Seri- | O 1028-3.1.4 Yes:__ No:x_ X:__
alized use of ESRO Services?

Note on ESROS3: It is possible, based on compile time constants, to limit the support on only the serialized use
of ESRO services.

E.3.2.2 Connectionless Oriented Operation

Item \ Protocol Capability Status | Reference Support

LSRO-CLI1 Does the IUT support Connection- | O 1028-5.3.1 Yes: x_No:__ X:__
less Oriented Operation?

LSRO-CL2 Does the IUT support 3-Way Hand- | O 1028-5.3.2 Yes: x_No:__ X:__
shake?

LSRO-CL3 Does the IUT support 2-Way Hand- | O 1028-5.3.3 Yes: x_No:__X:__
shake?

E.3.2.3 Segmentation and Reassembly
Item Protocol Capability Status | Reference Support
ESROS-SR1 Does the IUT support Segmentation | O 1028-5.3.4 Yes:__ No: x_X:__

and Reassembly?

E.3. ESROS

E.3.2.4 Connection Oriented Operation

Item Protocol Capability Status | Reference Support
ESROS-CO1 | Does the IUT support Connection | O 1028-5.4.1 Yes:__ No: x_X:__
Oriented Operation?
E.3.2.5 Concatenation and Separation
[Item | Protocol Capability | Status | Reference | Support
ESROS-CS1 Does the IUT support Concatena- | O 1028-5.6 Yes:__ No: x_X:__

tion and Separation?

97

98

APPENDIX E. NEDA PICS FOR ESROS

Bibliography

[1] M. Banan, M. Taylor, and J. Cheng. AT&T/Neda’s Efficient Short Remote Operations (ESRO) Protocol Specifi-
cation Version 1.2. RFC 2188 (Informational), September 1997.

[2] Neda Public Document. Open C Platform. Neda Published Document 103-103-01, Neda
Communications Inc, Bellevue, WA, October 1996. Online document is available at
http://www.mailmeanywhere.org/sw.free/neda/foundations/ocp/OCP-MulPub/accessPage.html.

99

http://www.mailmeanywhere.org/sw.free/neda/foundations/ocp/OCP-MulPub/accessPage.html

	Introduction
	About This Product
	About This Document
	Architecture
	Overview of Software
	Getting the sources
	Compiling and Building the Software

	ESRO Protocol Engine
	Introduction
	 Overview and Concepts
	ESROP Service Features
	Software Architecture
	Upper Interface
	Lower Interface
	Timer and Data Unit Management Interface
	Network Management Interface

	 ESRO Service Primitives
	SAP Management
	Operation Invocation

	 Upper Interface Functions
	SAP Management
	Bind an ESROP-User
	Unbind an ESROP-User

	ESROP Action Primitives
	ESROS-INVOKE.request
	ESROS-RESULT.request
	ESROS-ERROR.request

	ESROS Event Primitives
	ESROS-INVOKE.indication
	ESROS-RESULT.indication
	ESROS-ERROR.indication
	ESROS-FAILURE.indication
	ESROS-RESULT.confirm
	ESROS-ERROR.confirm

	 Lower Interface Functions
	Connectionless interface
	UDP SAP Bind
	UDP SAP Unbind

	Action Primitives
	Event Primitives

	 Environment Interface
	Data Unit Management
	Timer Management

	 Network Management
	 Portation Notes
	Unresolved Symbols
	Configuration
	Tracing
	Differences Between Unix and MS-DOS/Windows Portations
	Multiple Processes vs. Single Process
	Libraries used building MS-DOS ESROS user application in one process with Call-back API
	Scheduler Module (SCH_)
	Timer Module (TMR_)
	FLEX & BISON

	 Design Overview
	SAP Management
	ESROP Finite State Machine
	Events
	Event Processor
	State Information

	ESROS Timers
	ESROP PDU Parser
	ESROP PDU Formatter
	Operation Invocation
	Invoker ESROP-Provider
	Performer ESROP-Provider

	ESRO API
	ESROS With Function Call API
	Initialize the Parameters
	Activate ESROS Service Access Point
	Deactivate ESROS Service Access Point
	ESROS Invoke Service Request
	ESROS Result Service Request
	ESROS Error Service Request
	Get an event
	Sample Code
	invoker.c
	performer.c

	ESROS With Callback API
	Initialize the Parameters
	Activate ESROS Service Access Point
	Deactivate ESROS Service Access Point
	ESROS Invoke Service Request
	ESROS Result Service Request
	ESROS Error Service Request
	Sample Code
	invoksch.c
	perfsch.c

	 ESROS Programs
	Introduction
	Providers and Users - Unix vs. MS-DOS/Windows
	Unix
	MS-DOS/Windows

	The ESROS Service Provider
	Unix
	Running esros under Unix

	MS-DOS/Windows

	Service User Programs
	ops_xmpl
	Unix
	MS-DOS/Windows

	stress
	Unix
	MS-DOS/Windows

	Tester
	Unix
	MS-DOS/Windows

	Support Programs
	esropscop

	Running the Test Programs
	Unix
	ops_xmpl
	stress
	esrossi

	MS-DOS/Windows
	esros
	ops_xmpl
	stress
	tester

	Senarios
	Logging-Related Commands
	log
	logfile
	quiet
	verbose

	Invocation-Related Commands
	invoke request
	invoke indication

	Result-Related Commands
	result request
	result indication
	result confirmation

	Error-Related Commands
	error request
	error indication
	error confirmation

	General Commands
	sapbind
	saprelease
	failure indication
	rawevent
	delay

	Scenario File Manipulation Commands
	include
	path

	 Tracing
	OCP Trace Module Tracing
	Run Time Control of TM_
	TM Output

	PDU Transaction Logging
	PDU Transaction Log Display

	Implementation Notes
	Differences Between Unix and MS-DOS Portations
	Multiple Processes vs. Single Process
	Scheduler Module (SCH_)
	Timer Module (TMR_)
	FLEX & BISON

	ESROS Testing
	Conformance and Interconnection Testing Overview
	Abstract Test Methods
	What Is an ATM?
	The ATM/ATS Relationship
	Applicability

	Remote Test Method
	Coordinated Test Method
	Distributed Test Method
	Local Test Method

	The ESROS Test Tools
	How the Test Tools Work

	Test Objectives
	Valid sequences of primitives
	Invalid sequences of primitives
	Parameter variations on primitives
	Stress Tests
	Multiple results

	Test Cases
	Valid sequences of primitives
	1.001
	1.002
	1.003
	1.004
	1.005

	Invalid sequences of primitives
	2.001
	2.002
	2.003
	2.004
	2.005
	2.006

	Parameter variations on primitives
	3.001
	3.002
	3.003

	Stress Tests
	4.001
	4.002
	4.003
	4.004
	4.005
	4.006
	4.007
	4.008
	4.009

	Multiple Results
	5.001

	Example

	Acronyms
	ESRO API Example Usage
	invoker.c
	invoksch.c
	performer.c
	perfsch.c

	 ESRO Program man Pages
	Trace Bit Definitions
	 Neda PICS for ESROS
	Introduction
	Identification
	Supplier Identification
	Implementation Information

	ESROS
	ESROS Protocol Summary
	ESROS Protocol Capabilities
	Overview of ESRO Services
	Connectionless Oriented Operation
	Segmentation and Reassembly
	Connection Oriented Operation
	Concatenation and Separation

