ESROS

Application Programming Interface

Neda Document Number: 103-101-06.03
Last Updated: Author unspecified

Doc. Revision: source unspecified

Neda Communications, Inc.

January 27, 1999

Contents

1__Introductionl 5
L1 About This APIl« . o e 5
L2 Architecturel. oL 5
[L.3__ESRO Service Primitives|. 5

I1.3.1 SAP Management| 5
[1.3.2 Operation Invocation| 00 6

8

8

8

9

[1.4.4 ESROS Invoke Service Request| 0L 9
1.4.5 esult Service Request| 10
[1.4.6 ESROS Error Service Request|. oo 10

11

12

12

12

13

14

[1.5.4 ESROS Invoke Service Request| o oo 14
11.5.5 ESROS Result Service Request| 15
[1.o.6 ESROS Error Service Request|. 0L 16

1.5. ample Code| oL 16

18
xample Usag 19

Bl dnvokerd . . . o o oo 19
B2 nvoksclid o o 19
IB.3 performer.c| e 19
B.4 perfsch.c|. e 19

List of Tables
il ESRO Service Primitives|. o e e 6
12 ESROS-SAP Management| o L e 6
13 Service Primitives and corresponding functions| oL L Lo oL 7

List of Figures

I Implementation Architecture

[3__ Example of time sequence diagram for ESROS Services|

12 Time sequence diagram for ESRO Services|.

4 xample of time sequence diagram for ervices

©1999 Neda Communications, Inc.
All rights reserved.

IBM is a registered trademark of International Business Machines Cor-
poration. Unix is a trademark of AT&T and Unix System Laboratories.
Sun is a registered trademark and Sun Workstation is a trademark of
Sun Microsystems, Inc. Windows is a registered trademark of Microsoft
Corporation.

This document describes the Application Programming Interface for Ef-
ficient Short Remote Operation Services (ESROS).

Published by:

Neda Communications, Inc
17005 SE 31st Place
Bellevue, WA 98008

Permission is granted to make copy and distribute verbatim copies of
this manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute translations of this manual
into another language provided the copyright notice and this permission
notice are preserved on all copies.

Figure 1: Implementation Architecture

1 Introduction

1.1 About This API

This document defines the ESROS’ API. This definition conforms to RFC-2188 [1]. It is recommended that
for this document to be of the most use to the reader, they should be familiar with RFC-2188[2] and Open
C Platform [2].

Chapter 1 consists of an introduction to the API and the whole document.

Chapter 2 provides information about the interface to ESROS services.

Appendices include a Bibliography, a list of relevant Acronyms, ESROS API Example Usage, ESROS
Program Man Pages.

1.2 Architecture

Figure [T} depicts the architecture of the complete ESRO protocols. ESROS-Daemon is responsible for
implementation of ESRO-Protocol (RFC-2188. [I]) on both invoker and performer sides. ESROS-Daemon
exposes the ESROS APIT (see chapter entitled ESRO API) to its users.

This chapter provides information about the interface to ESROS services. It is intended for the users of
the ESROS sublayer.

The ESROS API is available in two different styles. In the first case the events are made available to
the user of the API through function calls. This is known as the Function Call API. Functions of this
API implementation all have the ESRO_ prefix. In the second case ESROS events trigger call backs to
functions registered by the user of the ESROS API. This is known as Call back API. Functions of this API
implementation all have the ESRO_CB_ prefix, in which CB stands for Call Back.

1.3 ESRO Service Primitives

This section describes the service primitives provided by the ESROP module, and the constraints on the
sequence in which the ESROP primitives may occur. Each ESROP-User interacts with the ESROP module
through one or more ESROP-SAPs.

Table[1]is a list of ESRO service primitive names.

The Neda ESROP upper interface conforms to the ESRO Service Definition [2]. The constraints on the
sequence in which ESROP primitives may occur are explained in Reference [2].

1.3.1 SAP Management

An ESROP-User must create an ESROP-SAP before it can use any of the services provided by the ESROP
module. Creation of an ESROP-SAP is accomplished through the ESROP _sapBind function. Parameters

ESRO Service Primitives

ESROS-INVOKE.request
ESROS-INOVKE-P.confirm
ESROS-INVOKE.indication
ESROS-RESULT .request
ESROS-RESULT.indication
ESROS-RESULT.confirm
ESROS-ERROR.request
ESROS-ERROR.indication
ESROS-ERROR.confirm
ESROS-FAILURE.indication

Table 1: ESRO Service Primitives

Function Description

ESROP _sapBind Bind an ESROP-SAP and register an ESROP-User.

ESROP _sapUnbind Unbind an ESROP-SAP and deregister an ESROP-
User.

Table 2: ESROS-SAP Management

to ESROP_sapBind communicate to the ESROP module both an ESRO-SAP selector address and a set of
functions for handling event primitives for that ESROP-SAP. ESROP event primitives are:

o ESROS-INVOKE.indication
o ESROS-RESULT .indication
o ESROS-ERROR.indication

o ESROS-FAILURE.indication

Deletion of an ESROP-SAP is accomplished through the ESROP_sapUnbind function. A summary of
Neda ESROP-SAP management facilities follows.

1.3.2 Operation Invocation

The sequence of ESROP primitives in an OPERATION is illustrated in the time sequence diagram below.

Figure 2: Time sequence diagram for ESRO Services

Service Primitive Name

Neda Function Name

Source

ESROESROS-INVOKE.request ESROP _invokeReq() Invoker user
ESROS-INVOKE-P.confirm Ret Val of ESROP_invokeReq() Provider
ESROS-INVOKE.indication (*ESROP _invokeInd)() Provider
ESROS-RESULT .request ESROP _resultReq() Performer user
ESROS-RESULT .indication (*ESROP _resultInd)() Provider
ESROS-RESULT .confirm (*ESROP _resultCnf)() Provider
ESROS-ERROR.request ESROP _errorReq() Performer user
ESROS-ERROR.indication (*ESROP _errorInd)() Provider
ESROS-ERROR.confirm (*ESROP _errorCnf)() Provider
ESROS-FAILURE .indication (*ESROP _failureInd)() Provider

Table 3: Service Primitives and corresponding functions

To initiate an ESROP operation, the invoker ESROP-User entity issues an ESROS-INVOKE.request at
the ESROP layer interface by invoking the function ESROP_invokeReq. The performer ESROP entity’s
ESROP-SAP is specified as one of the parameters of this action primitive.

The ESROS-INVOKE-P.confirm primitive is communicated to the invoker user through the return
value/parameter of the ESROP _invokeReq function.

An ESROS-INVOKE.indication event primitive is generated at the performer ESROP entity’s ESROP-
SAP through the invocation of the (*ESROP _invokeInd)() function associated with the performer ESROP-
SAP.

The performer ESROP-User can accept the operation and communicate the results by generating an
ESROS-RESULT .request at the ESROP layer interface by invoking the function ESROP _resultReq. The
performer ESROP-User can issue an ESROS-ERROR.request by invoking the function ESROP _errorReq.

An ESROS-RESULT.confirm or ESROS-ERROR.confirm event primitive is generated at the performer
ESROP entity ESROP-SAP through the invocation of the (*ESROP _resultCnf)() or (*ESROP_errorCnf)()
function associated with the performer ESROP-SAP.

An ESROS-RESULT.indication or ESROS-ERROR.indication event primitive is generated at the invoker
ESROP entity ESROP-SAP through the invocation of the (*ESROP _resultInd)() or (*ESROP_errorInd)()
function associated with the invoker ESROP-SAP.

A summary of all operation primitives appears below in Table

The OPERATION may fail due to either the inability of the ESROS provider to transmit the INVOKE
PDU or the unwillingness of the ESROS performer user to accept an ESROS-INVOKE.indication. These
cases are described later in this chapter. The OPERATION may also fail as a result of the failure in delivery
of RESULT or ERROR PDU. In such cases an ESROS-FAILURE.indication event primitive is issued at the

invoker or performer ESROP-SAP through the invocation of the (*ESROP failurelnd)() function.

1.4 ESROS With Function Call API

This section provides information about the Function Call API.

The services provided by the ESROS are defined in the ESROS Protocol Specification. The requests
and responses are communicated via non-blocking function calls. Remote operation requests, and error and
failure indications are communicated to the ESROS user via a call to the ESRO_getEvent function, which
may be a blocking call in some implementations.

Remote operation requests, result, error and failure indications are delivered to the ESROS user in an
event structure. The reader should consult the following chapters for information about the parameters
which make up the structures.

The following subsections describe the ESROS library functions.

1.4.1 Initialize the Parameters

PUBLIC ESRO_RetVal
ESRO_init (String configFileName)

The argument is defined as follows:
configFileName Config file name

configFileName specifies the config file name that contains ESROS initialization values.

1.4.2 Activate ESROS Service Access Point

The ESRO_sapBind function binds an ESRO Service Access Point (ESRO_SAP) to the current user process.
It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_sapBind (ESRO_SapDesc*sapDesc, /* out */
ESRO_SapSelsapSel
ESRO_FunctionalUnitfunctionalUnit)

The arguments are defined as follows:

sapDesc Return value: the SAP descriptor
sapSel SAP selector
functionalUnitHandshaking type

sapDesc is a pointer to an ESRO_SapDesc structure that is created for the current user.

sapSel identifies the ESROS SAP. If the SAP is in use by another user the function returns an error
value.

functionalUnit specifies the type of handshaking that is in effect for the SAP. ESRO_2Way specifies
two-way handshaking. ESRO_3Way specifies three-way handshaking. In order for ESROS user processes

to interact with one another over a network, they must specify local SAPs that use the same type of
handshaking. Furthermore, once a SAP is created the handshaking type stays in effect until the SAP is
released. Once an ESRO-SAP has been activated, the user process can use the services provided by ESROS
sublayer.

The function returns zero if successful, otherwise it returns a nonzero error value.

1.4.3 Deactivate ESROS Service Access Point

The ESRO_sapUnbind function deactivates the ESROs service access point which is currently in use. It has
the following syntax:

PUBLIC ESRO_RetVal
ESRO_sapUnbind (ESRO_SapSel sapSel)

The argument is defined as follows:

sapSel SAP selector

sapSel identifies the ESROS SAP which is already in use.
The function would return 0 if successful, and a nonzero error value otherwise.

1.4.4 ESROS Invoke Service Request

The ESRO_invokeReq function requests a remote operation. It has the following syntax:

PUBLIC ESRO_RetVal
ESRO_invokeReq(ESRO_InvokeId*invokelId,/* out */
ESRO_UserInvokeRefuserInvokeRef,
ESRO_SapDesclocSapDesc,
ESRO_SapSelremESROSap,
T_SapSel*remTsap,
N_SapAddr*remNsap,
ESRO_OperationValueopValue,
ESRO_EncodingTypeencodingType,
Intparameterlen,

Byte*parameter)

The input arguments are defined as follows:

invokeId Return value: invocation identifier
userInvokeRef User’s invocation reference
locSapDesc The local SAP descriptor

remESROSap Remote network SAP address

remTsap Remote Transport SAP.

remNsap The remote SAP selector

opValue Operation value

encodingType Encoding type
parameterLen The length of the parameter
parameter The address of the parameter buffer.

invokeld is assigned by ESROS sublayer. It is returned by ESROS sublayer. This identifier is used
in future communications between ESROS sublayer and service user to identify the invocation for ESROS
sublayer.

userInvokeRef is assigned by ESROS user. It is passed to ESROS sublayer by the user of service.
This identifier is used in future communications between ESROS sublayer and service user to identify the
invocation for the user of ESROS.

locSapDesc is the local SAP descriptor which is provided by ESROS sublayer at the time of SAP bind.

If ESROS can serve the invoker, the function returns 0 and the invocation identifier is returned through
the invokeld parameter. If ESROS cannot serve the invoker, the function returns a nonzero failure reason
value.

1.4.5 ESROS Result Service Request
The ESRO_resultReq function is issued by the performer of the operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_resultReq(ESRO_InvokeIdinvokeld,
ESRO_UserInvokeRefuserInvokeRef,
ESRO_EncodingTypeencodingType,
IntparameterLlen,

Bytexparameter)

The input arguments are defined as follows:

invokeld Invocation Identifier.
userInvokeRef User’s invocation reference
encodingType Encoding type

parameterLen Length of the parameter
parameter Address of the parameter buffer.

This primitive should be issued after an ESRO_INVOKEIND event. If ESROS cannot serve the requestor,
the function returns a nonzero reason value which is the failure value.

1.4.6 ESROS Error Service Request

The ESRO_errorReq function is issued by the performer of the operation in case of error in performing the
operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_errorReq(ESRO_InvokeIdinvokeld,
ESRO_UserInvokeRefuserInvokeRef,
ESRO_EncodingTypeencodingType,

10

ESRO_ErrorValueerrorValue,
IntparameterLlen,
Byte*parameter)

The input arguments are defined as follows:

invokeld The Invocation Identifier.
userInvokeRef User’s invocation reference
encodingType Encoding type

errorValue Identifies the nature of the error.
parameterLen The length of the parameter
parameter String describing the error.

This primitive should be issued after a INVOKEIND event. If esros cannot serve the requestor, the
function returns a negative value which is the failure value.

1.4.7 Get an event

If any event has occurred in ESROS sublayer, the ESRO_getEvent function gets the event(s). Based on the
value of wait, it either waits for and event (if no event available) or immediately returns.

PUBLIC ESRO_RetVal ESRO_getEvent(ESRO_SapDesc sapDesc,
ESRO_Event *event, Bool wait)

The input arguments are defined as follows:

sapDesc Return value: the SAP descriptor
event ESROS event
wait Blocking/non-blocking flag

The function returns any of the following event codes as the corresponding events are detected:

ESRO_INVOKEIND Remote user is requesting an operation
ESRO_FAILUREIND Operation has failed

ESRO_RESULTIND ESRO-RESULT-PDU recieved

ESRO_ERRORIND ESRO-ERROR-PDU received

ESRO_RESULTCNF ESROS RESULT confirm

ESRO_ERRORCNF ESROS ERROR confirm

The function returns negative error number if unsuccessful, or the number of events (0 or greater than
0).
The data structures of ESROS events and the corresponding event codes are listed below:

11

Figure 3: Example of time sequence diagram for ESROS Services

1.4.8 Sample Code

The code fragments described in the following sections illustrate the steps required to create a ESRO service
access point, and invoke and perform an operation. They are patterned after the primitives of the time
sequence in , Example of time sequence diagram for ESROS Services. The code fragments themselves are
listed in , ESRO API Example Usage. The code sample ”invoker.c” implements the left side, and the code
sample ”performer.c” implements the right side.

invoker.c

invoker.c first establishes a SAP, then issues an ESRO_invokeReq of a shell command operation. In this
example, the command operation is ”date”. It receives a confirmation (ESROESRO_ResultInd) indicat-
ing that the operation was performed. It then retrieves the results which are communicated through the
ESRO_ResultInd.

performer.c

performer.c receives the ESRO_Invokelnd of a ”date” command operation in the struct ESRO_Invokelnd.
The result of the command is the system date which is returned to invoker.c through ESRO_resultReq.
performer.c then waits for the next request from invoker.c.

1.5 ESROS With Callback API

This section provides information about the callback API functions.

The services provided by the ESROS are defined in the ESROS Protocol Specification,” RFC-2188” [IJ.
The requests are issued through function calls. Callback functions associated with ESROS events are passed
to ESROS at the time of sapBind function call.

The following subsections describe the ESROS library functions

1.5.1 Initialize the Parameters

PUBLIC ESRO_RetVal
ESRO_CB_init (String configFileName)

The argument is defined as follows:
configFileName Config file name

configFileName specifies the config file name that contains ESROS initialization parameters.

12

1.5.2 Activate ESROS Service Access Point

The ESRO_CB_sapBind function binds an ESRO Service Access Point (ESRO_SAP) for the current user
process. It has the following syntax:

PUBLIC ESRO_RetVal
ESRO_CB_sapBind(
ESRO_SapDesc *sapDesc,

ESRO_SapSel sapSel,

ESRO_FunctionalUnit functionalUnit,

int (*invokeInd) (ESRO_SapDesc locSapDesc,
ESRO_SapSel remESROSap,

T_SapSel *remTsap,

N_SapAddr *remNsap,

ESRO_Invokeld invokeld,

ESRO_OperationValue opValue,
ESRO_EncodingType encodingType,

DU_View parameter),

int (*resultInd) (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

DU_View parameter),

int (*errorInd) (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

ESRO_ErrorValue errorValue,
DU_View parameter),

int (*resultCnf) (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef),

int (*errorCnf) (ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef),

int (*failurelInd) (ESRO_InvokelId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_FailureValue failureValue))

The input arguments are defined as follows:

sapDesc Local SAP descriptor (outgoing param)
sapSel Local SAP selector

functionalUnit Handshaking type

locSapDesc Local SAP descriptor
remESROSap Remote network SAP address
remTsap Rmote Transport SAP.

remNsap The remote SAP selector

invokeld Invocation identifier

13

userInvokeRef User’s invocation reference
opValue Operation value
encodingType Encoding type

errorValue Error value
failureValue Failure value
parameter parameter.

(xinvokeInd) () Invoke indication function
(xresultInd) () Result indication function
(xerrorInd) () Error indication function
(*resultCnf) () Result confirmation function
(xerrorCnf) () Error confirmation function
(xfailureInd) () Failure indication function

sapDesc is a pointer to an ESRO_SapDesc structure that is created for the current user.

sapSel identifies the ESROS SAP. If the SAP is in use by another user the function returns an error
value.

functionalUnit specifies the type of handshaking that is in effect for the SAP. ESRO_2Way specifies
two-way handshaking. ESRO_3Way specifies three-way handshaking. In order for ESROS user processes
to interact with one another over a network, they must specify local SAPs that use the same type of
handshaking. Furthermore, once a SAP is created the handshaking type stays in effect until the SAP is
released. Once an ESRO-SAP has been activated, the user process can use the services provided by ESROS.

After its ESRO-SAP has been activated, the user process can use the services provided by ESROS.

The function returns zero if successful, otherwise it returns a nonzero error value.

1.5.3 Deactivate ESROS Service Access Point

The ESRO_CB_sapUnbind function deactivates the ESROs service access point which is currently in use. It
has the following syntax:

PUBLIC ESRO_RetVal
ESRO_sapUnbind (ESRO_SapSel sapSel)

The argument is defined as follows:
sapSel SAP selector

sapSel identifies the ESROS SAP which is already in use.
The function would return 0 if successful, and a nonzero error value otherwise.

1.5.4 ESROS Invoke Service Request

The ESRO_CB_invokeReq function requests a remote operation. It has the following syntax:

14

PUBLIC ESRO_RetVal

ESRO_CB_invokeReq (ESRO_InvokeId *invokeld,/* out */
ESRO_UserInvokeRef userInvokeRef,

ESRO_SapDesc locSapDesc,

ESRO_SapSel remESROSap,

T_SapSel *remTsap,

N_SapAddr *remNsap,

ESRO_OperationValue opValue,

ESRO_EncodingType encodingType,

DU_View parameter)

The input arguments are defined as follows:

invokeId Return value: invocation identifier
userInvokeRef User’s invocation reference
locSapDesc The local SAP descriptor
remESROSap Remote network SAP address

remTsap Rmote Transport SAP
remNsap The remote SAP selector
opValue Operation value
encodingType Encoding type
parameter user data

invokeld is assigned by ESROS sublayer. It is returned by ESROS sublayer and identifies an invocation
for ESROS sublayer. This identifier is used in future communications between ESROS sublayer and service
user to identify the invocation for ESROS sublayer.

userInvokeRef is assigned by ESROS user. It is passed to ESROS sublayer by the user of service.
This identifier is used in future communications between ESROS sublayer and service user to identify the
invocation for the user of ESROS.

locSapDesc is the local SAP descriptor which is provided by ESROS sublayer at the time of SAP bind.

parameter is a pointer to a DU _view data structure into which user data was previously copied. Refer
to the Open C Platform document [2] for a discussion of the DU_ module.

If ESROS can serve the invoker, the function returns 0 and the invocation identifier is returned through
the invokeld parameter. If ESROS cannot serve the invoker, the function returns a nonzero failure reason
value.

1.5.5 ESROS Result Service Request
The ESRO_CB_resultReq function is issued by the performer of the operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_CB_resultReq(ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

DU_View parameter)

15

The input arguments are defined as follows:

invokeId invocation Identifier
userInvokeRef User’s invocation reference
encodingType Encoding type

parameter Parameter.

This primitive should be issued after invokelnd function is called. If ESROS cannot serve the requestor,
the function returns a nonzero reason value which is the failure value.

1.5.6 ESROS Error Service Request

The ESRO_CB_errorReq function is issued by the performer of the operation in case of error in performing
the operation. It has the following syntax:

PUBLIC ESRO_RetVal

ESRO_CB_errorReq(ESRO_InvokeId invokeld,
ESRO_UserInvokeRef userInvokeRef,
ESRO_EncodingType encodingType,

ESRO_ErrorValue errorValue,
DU_View parameter)

The input arguments are defined as follows:

invokeld The Invocation Identifier
userInvokeRef User’s invocation reference
encodingType Encoding type

errorValue Error value

parameter Parameter.

This primitive should be issued after invokelnd function is called. If ESROS cannot serve the requestor,
the function returns a negative value which is the failure value.

1.5.7 Sample Code

The code fragments described in the following sections illustrate the steps required to create a ESRO service
access point, and invoke and perform an operation. They are patterned after the primitives of the time
sequence in , Example of time sequence diagram for ESROS CB Services. The code fragments themselves
are listed in , ESRO API Example Usage. The code sample ”invoksch.c” implements the left side, and the
code sample ”perfsch.c” implements the right side.

invoksch.c

invoksch.c first establishes a SAP, then issues an ESRO_invokeReq of a shell command operation. In this
example, the command operation is "date”. The resultInd function is called indicating that the operation
was performed and the result is passed to it through data parameter.

16

Figure 4: Example of time sequence diagram for ESROS CB Services

perfsch.c

perfsch.c establishes a SAP and waits for a request from invoksch.c. The invokelnd function is called when
the request for a command operation arrives. The result of the ”date” command is the system date. perfsch.c
then returns the data to invoksch.c through ESRO_resultReq. perfsch.c then waits for the next request from
invoksch.c.

17

A Acronyms

ASN.1
FSM
IP-Message
ESROS
ESROP
ESRO-SAP
MD

MH

MHS

MS

MT

MTA

MTS

SEQ-
TMR._
TM_

DU_

Abstract Syntax Notation One (ASN.1)
ESROS Finite State Machine.
InterPersonal Message

Efficient Short Remote Operation Services
ESROS Protocol Engine

ESROS Service Access Point.
Management Domain

Message Handling

Message Handling System

Message Store

Message Transfer

Message Transfer Agent

Message Transfer Service

Sequence Module

Timer Management Module

Trace Module

Data Unit Management Module

18

B ESRO API Example Usage
B.1 invoker.c
B.2 invoksch.c

B.3 performer.c

B.4 perfsch.c

19

References

[1] M. Banan, M. Taylor, and J. Cheng. AT&T /Neda’s Efficient Short Remote Operations (ESRO) Protocol
Specification Version 1.2. RFC 2188 (Informational), September 1997.

[2] Neda Public Document. Open C Platform. Neda Published Document 103-103-01, Neda
Communications Inc, Bellevue, WA, October 1996. Online document is available at
http://www.mailmeanywhere.org/sw.free/neda/foundations/ocp/OCP-MulPub/accessPage.html.

20

http://www.mailmeanywhere.org/sw.free/neda/foundations/ocp/OCP-MulPub/accessPage.html

	Introduction
	About This API
	Architecture
	ESRO Service Primitives
	SAP Management
	Operation Invocation

	ESROS With Function Call API
	Initialize the Parameters
	Activate ESROS Service Access Point
	Deactivate ESROS Service Access Point
	ESROS Invoke Service Request
	ESROS Result Service Request
	ESROS Error Service Request
	Get an event
	Sample Code

	ESROS With Callback API
	Initialize the Parameters
	Activate ESROS Service Access Point
	Deactivate ESROS Service Access Point
	ESROS Invoke Service Request
	ESROS Result Service Request
	ESROS Error Service Request
	Sample Code

	Acronyms
	ESRO API Example Usage
	invoker.c
	invoksch.c
	performer.c
	perfsch.c

