
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Unified Python Interactive Command Modules (ICM)
and ICM-Players

A Framework For Development Of Expectations-Complete Commands

Neda Communications, Inc.
Email: http://www.by-star.net/contact

http://www.by-star.net/PLPC/180050

December 13, 2018
Neda Communications, Inc. Unified Python Interactive Command Modules (ICM) and ICM-Players

http://www.by-star.net/contact
http://www.by-star.net/PLPC/180050


Summary
When writing Python software, your code is usually one of:

1 Python Functions (part of a larger system) or Libraries
2 Python Scripts – to be executed at command line
3 Web Services – performers (servers) to be used by invokers (clients)

Unified Interactive Command Modules (ICM) is a framework that allows you
to make your code be any or all of the above – with near zero extra effort.

ICM permits you to automatically map Python callables to command-line –
similar to click. ICM also permits you to automatically map Python callables
to Web Services operations – similar to Java’s DropWizard.

Since “Unified Commands” embed their full information about their
arguments and outcomes within themselves, it is possible build to generic
GUI’s for ICMs that can drived the formation of their command line.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Benefits Of This Commands Oriented Approach
Benefits Of Building On Top Of “Operations” and “Commands”
Augmenting Python at its most basic level with the concepts and abstractions
of “Commands” and “Operations” has many benefits.

Scripting, Web Services And More Than Unit Testing
Python code in the form of “Commands” becomes immediately invokable
at command-line-interface. Python scripting is simplified and made
consistent.
Since “Commands” are derived from “Operations” and since they can be
made “Remote Operations”, we can use Swagger (OpenApi) to build Web
Services based on Commands.
Since Commands are Python callables that are easily executable from
outside of the code, they are easily testable.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Commands Are Abstract Expectations Complete

Abstract Expectations Of Commands
Every Command “knows” with what options, parameters and arguments it
may be called.
Every Command “knows” the syntax of its results.

Command Expectations Are Emitable
Every Command can emit its full parameter expectations.
Every Command can emit its full results syntax information.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



ICM-Players: User Interfaces That Fulfill Command
Expectations

ICM-Players Are Generic Fancy UIs That Build Command-Lines
Since each Command can fully tell us – “emit” – its full expectations, we can
build different types of user interfaces that present these expectations to the
user.
The user can then specify these inputs in stages to produce complex
command-lines.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Precedence: Other Similar Approaches

There is ample precedence for each of the 3 aspects that the ICM model puts
forward:

1 Automated Mapping Of Command-Line To Python Callables
2 Automated Building Of Web Services Based On Collection Of Callables
3 Generic UIs that Invoke The Command-Line Or The Web Service

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Automated Mapping Of Command-Line To Python Callables

Argparse/Optparse/Getopt. Built into Python. Complex.
[Compago](https://github.com/jmohr/compago) Very nice, but
unmaintained. Also, does not run on Python 3.
[Docopt](http://docopt.org/)
[Clint](https://github.com/kennethreitz/clint)
[Click](http://click.pocoo.org/3/)
https://pypi.python.org/pypi/snakeshell/0.4.0

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Automated Mapping Of Command-Line To Python Callables
The concept and terminology of “Command” and “interactive” come from
elisp (emacs lisp). But they have been modified and enhanced. In elisp:

The (interactive) special form declares that a function is a command, and that
it may therefore be called interactively (via M-x). The argument arg-descriptor
declares how to compute the arguments to the command when the command
is called interactively.

A command may be called from Lisp programs like any other function, but
then the caller supplies the arguments and arg-descriptor has no effect.

Therefore, in elisp the concepts of “Command” and “interactive” are directly
linked. We consider that a mistake.

With ICMs “Command” and “interactive” are independent concepts. Being
“interactive” may also impact processing of a command and its outputs.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Automated Building Of Web Services Based On Collection Of
Callables

Java's Dropwizard Framework

Java's Spring Framework

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Generic UIs that Invoke The Command-Line Or The Web
Service

Swagger-UI

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Specialized ICMs – Libraries, Packages, APPs And
Frameworks

ICM is a foundational building block.
Concept of ICM is language independent, a practical subset of the capabilities
of Python-ICM has been implemented as BASH-ICM.
MARMEE and GOSSONoT are examples of ICM Based Packages and ICM
higher level frameworks.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Related Documents

Remote Operations Interactive Command Modules (RO-ICM)
Best Current (2018) Practices For Web Services Development
http://www.by-star.net/PLPC/180056 — [2]

A Generalized Swagger (OpenAPI) Centered Web Services
Invocations And Testing Framework
http://www.by-star.net/PLPC/180057 — [1]

Bash Interactive Command Modules (Bash-ICM)
http://www.by-star.net/PLPC/180058 — [?]

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

http://www.by-star.net/PLPC/180056
http://www.by-star.net/PLPC/180057
http://www.by-star.net/PLPC/180058


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Summary
Precedence: Other Similar Approaches

Specialized ICMs – Libraries, Packages, Apps And Frameworks
Related Documents

About This Software And About This Document
Document Outline

Part Of ByStar and BISOS
About This Screencast (Presentation/Document)

Obtaining The Software
You can obtain complete source-code for ICM from:
PyPi Pip Install
pip install unisos.icm
pip install unisos.icmExamples

Github Repos
https://github.com/unisos-pip/icm
https://github.com/unisos-pip/icmExamples

https://github.com/unisos-pip/icm
https://github.com/unisos-pip/icmExamples


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Summary
Precedence: Other Similar Approaches

Specialized ICMs – Libraries, Packages, Apps And Frameworks
Related Documents

About This Software And About This Document
Document Outline

Part Of ByStar and BISOS
About This Screencast (Presentation/Document)

Part Of ByStar DE and BISOS

ICM is Part Of A Much Bigger Picture.

ICM Is Part Of: The Libre-Halaal ByStar Digital Ecosystem

And Part Of: BISOS: ByStar Internet Services OS

ICM is being used and developed in that context.

http://www.by-star.net
http://www.by-star.net/PLPC/180047


About This Presentation/ScreenCast
You can obtain this document at its access page:

http://www.by-star.net/PLPC/180050
where it is available in multiple forms and multiple formats:

Article/Book Form: Best suited for cover-to-cover reading (pdf).
Pdf Format: Best suited for printing and cover-to-cover reading.
HTML/Web Format: Best suited for Web reading and cross referencing.

Presentation Form: Best suited for quick scan – with live URLs –(pdf).
Screencast: A slide oriented voice-over narrated presentation (Reveal.js Based)
PDF Slides: Best suited for printing of the slides (Beamer Generated)
HTML Slides And Notes: Slide and notes in html format (Beamer+HaVeA
Generated)
PDF Slides and Notes: Best suited for printing of presentation notes (Beamer
Generated)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

http://www.by-star.net/PLPC/180050


Document Outline:

The Unified Commands Model, Concepts And Terminology
The Model Of ICM-Players And ICM-Apps
ICM Specializations
Direct And Remote Operations – Direct ICMs, Remote ICM Invokers,
Remote ICM Performers
Direct ICMs Command-Line Structure And Model
Overview Of The unisos.icm Package
Current Status And Next Steps

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Outline of Part II – Concepts And Terminology Of Unified
Expectations-Complete Commands

7 Concept Of Unified Commands
Terminology Of Native vs Foreign, Local vs Remote, Interactive vs
Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv)
Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be
Invoked As Interactive Or As Non-Interactive

8 Interactive Command Modules (ICMs) As Collections Of Related
Commands

Related And Common Parameters
9 An Overview Of ICM Framework, Modules And Players. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Unified Commands

Command (Unified Command)
A “Command” is a user invokable execution entry point.

A Unified Command can be invoked from:
The Command Line Interface – (Foreign, Local, Interactive)
Through A Web Services (Remote Operations) Invoker – (Foreign,
Remote)
Python Code – (Native, Local)



Terminology Of Native vs Foreign, Local vs Remote,
Interactive vs Non-Interactive

Native Vs Foreign
Invocation of Commands can be “Native” (an ordinary call) or “Foreign” (a
framework call).

Local Vs Remote
Invocation of Commands can be “Local” (same process and machine) or
“Remote” (different process or different machine).

Interactive Vs Non-Interactive
For the purposes of the invokation an abstract Human-User may exist
(interactive) or an abstract Human-User does no exist (non-interactive).

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Terminimogy Of Callables, Operations And Commands

Operations Are Special Forms Of Callables
Operations are Callables whose arguments and results are “foreignly” specified.

Commands Are Special Forms Of Operations
Commands are Operations which are expection complete



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Commands Are Special Forms Of Operations
Commands As Operations
Each Command has:

A cmndName (an opName)
Operations Arguments In The Form Of:

Cmnd-Options
Cmnd-Parameters
Cmnd-Arguments

Operation Results In The Form Of:
stdExit, stdOut, stdErr
opOutcome



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Commands Are Patterned After Operations

Commands Are aware of Command-Line
Each Command expects to be invoked from the command-line and is aware of
Command-Line to python-callable mappings.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Commands Have Embedded In Themselves Full Arguments
And Results Information

class Cmnd
Each Cmnd, through its methods can output its:

Cmnd-Name
Cmnd-Description
Expected Parameters (and description of each expected Parameter)
Expected Arguments (and description of expected Arguments)
Expected outcome



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Commands Are Capable Of Validating Their Expectations

class Cmnd
Is aware of how it has been invoked (Command-Line, Web Services, Python)
and can validate its expectations.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players

Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
Terminology Of Callables, Operations And Commands
Commands Are Special Forms Of Operations
Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
Commands Can Emit Their Expectations
Commands Are Capable Of Validating Their Expectations
Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

Commands Have Embedded In Themselves Full Arguments
And Results Information

When Invoked As Interactive
Commands get their parameters from command-line.
Commands write to their stdout, stderr

When Invoked As Non-Interactive
Commands get their parameters to have been passed to them in full.
Comands may avoid writing to their stdout, stderr



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players
Related And Common Parameters

Interactive Command Modules (ICMs) As Collections Of
Related Commands

Collection Of Related Commands
When related Commands are grouped in a python module with a common
__main__ entry, they for an “Interactive Commands Module (ICM)”.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Concept Of Unified Commands
Interactive Command Modules (ICMs) As Collections Of Related Commands

An Overview Of ICM Framework, Modules And Players
Related And Common Parameters

Related And Common Parameters

Collection Of Related Commands
Parameters specification for different commands may be shared in an ICM.



An Overview Of ICM Framework, Modules And Players

Common Facilities Library (logging, tracing, exception handling, etc)
pip install unisos.ucf

Interactive Commands Module Library
pip install unisos.icm

ICM Specialization Library-1
(e.g. BxO Lib)

ICM Specialization Library-N
(e.g. GOSSONoT Lib)

Direct-Operations ICMs

Flower-Celery
ICM-Player

Blee
ICM-Player

       Interactive Command Modules (ICM) And Players

Modules

Module-Players

Modules Specialization

Modules Framework

Foundational
Facilities

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Outline of Part III – The Model Of ICM-Players, ICM-Apps
And ICM Collections

10 The Concept Of ICM-Players And ICM-Apps
The Blee-ICM-Player (With Emacs and elisp)
Abstraction Of ICM-Apps

11 The Concep Of ICM Collections

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Concept Of ICM-Players And ICM-Apps
The Concep Of ICM Collections

The Blee-ICM-Player (With Emacs and elisp)
Abstraction Of ICM-Apps

Interactive Command Modules (ICMs) As Collections Of
Related Commands

About ICM Players
Based on the ICM’s self-contained info, ICM modules can be used at
cmnd-line or through auto-generated User-Interfaces.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Concept Of ICM-Players And ICM-Apps
The Concep Of ICM Collections

The Blee-ICM-Player (With Emacs and elisp)
Abstraction Of ICM-Apps

The Blee-ICM-Player (With Emacs and elisp)

Blee-ICM-Player
An emacs based ICM-Player has been implemented.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Concept Of ICM-Players And ICM-Apps
The Concep Of ICM Collections

The Blee-ICM-Player (With Emacs and elisp)
Abstraction Of ICM-Apps

Abstraction Of ICM-Apps

ICM-Apps:
When a group of ICMs wish to have a UI which is more specialized than
ICM-Players, custom UIs for their commands can be built.
That packaging of the custom UIs and the ICMs is called and ICM-App.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Concept Of ICM-Players And ICM-Apps
The Concep Of ICM Collections

Interactive Command Modules (ICMs) As Collections Of
Related Commands

Collection Of Commands Form An ICM
py-Commands –> Py-ICM
py-RemoteCommands –> py-Performer-ICM –> py-Invoker-ICM

Collection ICMs And Hierachies in BISOS
ICM-Pkg-1 = py-ICM-1 + bash-ICM-2 + py-Invoker-ICM-3 + py-ICM-n
BISOS-Feature-Area-1 = ICM-Pkg-1 + ICM-Pkg-n
BISOS = BISOS-Feature-Area-1 + BISOS-Feature-Area-n



Outline of Part VI – ICM Specializations

12 About BASH-ICMs

13 ICM Groupings

14 About ICM Libraries (Collections Of Reusable ICMs)

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



About BASH-ICMs

Concept of ICM is language independent.
In Python, Commands are implemented as a Class that encapsulates the
expectations within the “Class Cmnd”.
In Bash, Commands are special forms of Bash functions.
A practical subset of the capabilities of Python-ICM has been implemented as
Bash-ICM.
See BASH-ICMs for more details.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



ICM Groupings

ICM
ICM.Packaged
ICM.Packaged.basicPkg – Marme
ICM.Packaged.toiimPkg
ICM.Packaged.empnaPkg
ICM.Grouped
ICM.Grouped.Bisos
ICM.Scattered(bxt)
ICM.Scattered.mailingsProc
ICM.Unitary – A Single ICM
ICM.Standalone – A Single ICM With Library Included – Distributable

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

About BASH-ICMs
ICM Groupings

About ICM Libraries (Collections Of Reusable ICMs)

About ICM Libraries – Collections Of Reusable ICMs

ICM “Commands” can be included in ICM-Libraries which can then be
combined.



Outline of Part V – Direct And Remote Operations – Direct
ICMs, Remote ICM Invokers, Remote ICM Performers

15 A Unified Model For Python Invocations, Command-Line Invocations And
Remote-Op Invocations

16 Benefits And Powers Of The ICM Unified Model
Direct Operations ICM (DO-ICM) Model

17 An Overview Of Direct-Operations ICMs and ICM-Players
ICMs Can Be Converted To Web Services Performer

18 An Overview Of Web Services ICM With Swagger Code Generators

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Development Workflow

Python Invocation Inputs: Complex Arguments Python Invocation Outputs:
Complex Return Values

Command-Line Invocation Inputs: Options And Args Command-Line
Invocation Outputs: stdout, stderr

Remote-Operation Invocation Inputs: parameters Remote-Operation Outputs:
Results, Errors

Python Remote ICM (Interactive Commands Module) Model Transparently
Unifies The Three

You just write your python code, the CLI and Remote Operations are fully
auto generated.

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Unified Model For Python Invocations, Command-Line Invocations And Remote-Op Invocations
Benefits And Powers Of The ICM Unified Model

An Overview Of Direct-Operations ICMs and ICM-Players
An Overview Of Web Services ICM With Swagger Code Generators

Direct Operations ICM (DO-ICM) Model

Benefits And Powers Of The ICM Unified Model

Most of your development life-cycle is in a local and single process
environment.
At will you map to command line.
At will you can split the functionality to remote-operations (Web Services).
You can switch between the three models by maintaining a single code base.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Unified Model For Python Invocations, Command-Line Invocations And Remote-Op Invocations
Benefits And Powers Of The ICM Unified Model

An Overview Of Direct-Operations ICMs and ICM-Players
An Overview Of Web Services ICM With Swagger Code Generators

Direct Operations ICM (DO-ICM) Model

ICM Performer Responders

ICM-Commands are directly invoked.
In a single process model where parameters and arguments and results are
through the command line and file system.



An Overview Of Direct-Operations ICMs and ICM-Players

 Direct  Interactive Command Modules (DO-ICM)  

Interactive Command Module
               (ICM)

Blee 
ICM-Player

JS
ICM-Player

CLI-ICM-IF

ICM-Apps

ICM Framework and Foundation Libs

Python 
ICM Using Progs

Commands Library

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Unified Model For Python Invocations, Command-Line Invocations And Remote-Op Invocations
Benefits And Powers Of The ICM Unified Model

An Overview Of Direct-Operations ICMs and ICM-Players
An Overview Of Web Services ICM With Swagger Code Generators

ICMs Can Be Converted To Web Services Performer

Convertable To Web Services Performer

Auto Generation Of Web Services Performer
Since ICMs are expectation complete, their expectations can be converted to a
swagger-file.
The swagger-code-generator will then use the swagger-file to generate
web-services code.
Commands within the ICM then become “controllers” that the generated code
uses.
All of this can be fully automated such that an ICM becomes a web-service
performer without any coding.



Web Services ICM With Swagger Code Generators

 Web Services Interactive Command Modules (ws-icm) Code Generators & Libraries  

Interactive Command Module
               (ICM)

Python ICM Callers

Blee 
ICM-Player

JS
ICM-Player

WS-ICM
Performer
(Generated)

WS-ICM
Invoker
(Bravado)

CLI-ICM-IF

CLI-Rinvoker

Python WS-ICM
     App

JS
Swagger-UI

1

2

3

4

ICM Framework 
And Modules  Libs

Swagger
Specification

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



Outline of Part VI – Direct ICMs Command-Line Structure
And Model

19 Common Direct ICMs Command Syntax And Model – Python And Bash
Specific Features

20 Python DO-ICM Features
Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Common Direct ICMs Command Syntax And Model – Python
And Bash Specific Features

Model And Terminology of Direct-ICM Command-Line is based on:
1 CmndsModule – icmCmndsModule
2 Cmnds – cmndName
3 Cmnd Options – optionName1 ... optionNameN
4 Cmnd Params – parmName1 ... paramNameN
5 Cmnd Args – arg1 ... argN

Which leads to the common ICMs command-line invocation syntax of
icmCmndsModule --optionNameN --parmNameN=paramValueN -i cmndName arg1 argN

Python and Bash ICMs, each have their own specific additional features.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Python DO-ICM Features

1 –examples – Frequently Invoked Menu Examples
2 –help – Usage – getopt Summary
3 Logging
4 Tracing and Debugging
5 –load – Run time additional code loading



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Frequently Invoked Menu Example

Running the ICM with no options, params, cmnds or args or using the
--examples option produces frequently invoked menu examples.

The examples menu is often tailored to desired usage patterns.
This is the best way of getting started.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Usage –help

Running the ICM with --help provides the usual getopt usage information.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Logging

With -v 30 -- default -- ICM results go to stdout.

With -v 20, ICMs also report Swagger specified inputs and output
with -v 15, ICMs also report http traffic as seen by requests
with -v 1, ICMs also report digestion of the swagger file



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Tracing And Debugging

You can enable run time tracing of key callables
(those decorated with @icm.subjectToTracking) by including:

-v 1 --callTrackings monitor+ --callTrackings invoke+



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
Python DO-ICM Features

Frequently Invoked Menu Example
Usage –help
Logging
Tracing And Debugging
Plugins – Loading Of Additional Python Code

Plugins – Loading Of Additional Python Code

Additional code can be added to an ICM at run time with the

--load additionalCode.py



Outline of Part VII – Python Native Command Invocations

21 Python Method Invocations Of Commands

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Python Method Invocations Of Commands

Python Method Invocations Of Commands
Commands can also be invoked from python. The cmnd() method of the
icm.Cmnd() class needs to be called with interactive=False. Below is a
demonstrational simple example.

icm.cmndList_mainsMethods().cmnd(
interactive=False,
importedCmnds=g_importedCmnds,
mainFileName=__file__,

)

See unisos.icmExamples pip package for more details.



Outline of Part VIII – Remote Operation ICMs (RO-ICM)s –
ICM-Performers and ICM-Invokers

22 ICM-Performers

23 ICM-Invokers

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICM-Performers
ICM-Invokers

ICM-Performers

Remote Operations Interactive Command Modules (RO-ICM)
Best Current (2018) Practices For Web Services Development
http://www.by-star.net/PLPC/180056 — [2]

http://www.by-star.net/PLPC/180056


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ICM-Performers
ICM-Invokers

ICM-Invokers

A Generalized Swagger (OpenAPI) Centered Web Services
Invocations And Testing Framework
http://www.by-star.net/PLPC/180057 — [1]

http://www.by-star.net/PLPC/180057


Outline of Part IX – Common Foundations

24 Wrappers And Streams

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Wrappers And Streams

Wrappers And Streams

pip install unisos.ucf



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Wrappers And Streams

Wrappers And Streams

Add to warpers ICM-Instantiate
Common ICM Parameter – Out Stream Consumer/Usage Context
–oUsage=icmPlayerBlee



Outline of Part X – Overview Of The unisos.icm Package

25 AST Analysis For class Cmnd Mapping

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

AST Analysis For class Cmnd Mapping

Wrappers And Streams

pip install unisos.ucf



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

AST Analysis For class Cmnd Mapping

Wrappers And Streams

Python’s Abstract Syntax Tree (AST) is searched to locate all class Cmnd
declarations, through which the mapping to the cmnd method is facilitated.



Outline of Part XI – Current Status And Next Steps

26 Current Status

27 Next Steps

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Current Status
Next Steps

ICM-Invokers

In the context of ByStar and BISOS, both Python-ICMs and Bash-ICMs have
been in use for more than a decade.
With the exception of full automation of web services conversion all features
and capabilities mentioned in this document have been implemented.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Current Status
Next Steps

Next Steps

ICM is now ready for general use.
If you use it, please send us your feedback.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Current Status
Next Steps

” Mohsen BANAN ”.
” a generalized swagger (openapi) centered web services testing and
invocations framework ”.
Permanent Libre Published Content ”180057”, Autonomously
Self-Published, ”December” 2018.
http://www.by-star.net/PLPC/180057.
” Mohsen BANAN ”.
” remote operations interactive command modules (ro-icm) best current
(2018) practices for web services development ”.
Permanent Libre Published Content ”180056”, Autonomously
Self-Published, ”September” 2018.

http://www.by-star.net/PLPC/180057


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Current Status
Next Steps

http://www.by-star.net/PLPC/180056.

http://www.by-star.net/PLPC/180056

	Overview
	Summary
	Benefits Of This Commands Oriented Approach
	Commands Are Abstract Expectations Complete
	ICM-Players: User Interfaces That Fulfill Command Expectations

	Precedence: Other Similar Approaches
	Automated Mapping Of Command-Line To Callables
	Automated Building Of Web Services Based On Collection Of Callables
	Generic UIs that Invoke The Command-Line Or The Web Service

	Specialized ICMs – Libraries, Packages, Apps And Frameworks
	Related Documents
	About This Software And About This Document
	Part Of ByStar and BISOS
	About This Screencast (Presentation/Document)

	Document Outline

	Concepts And Terminology Of Unified Expectations-Complete Commands
	Concept Of Unified Commands
	Terminology Of Native vs Foreign, Local vs Remote, Interactive vs Non-Interactive
	Terminology Of Callables, Operations And Commands
	Commands Are Special Forms Of Operations
	Commands Are Aware Of Their Expectation – Getopt (argc,argv) Command-Line Mapping
	Commands Can Emit Their Expectations
	Commands Are Capable Of Validating Their Expectations
	Native Invocations Vs Interactive Invocation – Commands Can Be Invoked As Interactive Or As Non-Interactive

	Interactive Command Modules (ICMs) As Collections Of Related Commands
	Related And Common Parameters

	An Overview Of ICM Framework, Modules And Players

	The Model Of ICM-Players, ICM-Apps And ICM Collections
	The Concept Of ICM-Players And ICM-Apps
	The Blee-ICM-Player (With Emacs and elisp)
	Abstraction Of ICM-Apps

	The Concep Of ICM Collections

	ICM Specializations
	About BASH-ICMs
	ICM Groupings
	About ICM Libraries (Collections Of Reusable ICMs)

	Direct And Remote Operations – Direct ICMs, Remote ICM Invokers, Remote ICM Performers
	A Unified Model For Python Invocations, Command-Line Invocations And Remote-Op Invocations
	Benefits And Powers Of The ICM Unified Model
	Direct Operations ICM (DO-ICM) Model

	An Overview Of Direct-Operations ICMs and ICM-Players
	ICMs Can Be Converted To Web Services Performer

	An Overview Of Web Services ICM With Swagger Code Generators

	Direct ICMs Command-Line Structure And Model
	Common Direct ICMs Command Syntax And Model – Python And Bash Specific Features
	Python DO-ICM Features
	Frequently Invoked Menu Example
	Usage –help
	Logging
	Tracing And Debugging
	Plugins – Loading Of Additional Python Code


	Python Native Command Invocations
	Python Method Invocations Of Commands

	Remote Operation ICMs (RO-ICM)s – ICM-Performers and ICM-Invokers
	ICM-Performers
	ICM-Invokers

	Common Foundations
	Wrappers And Streams

	Overview Of The unisos.icm Package
	AST Analysis For class Cmnd Mapping

	Current Status And Next Steps
	Current Status
	Next Steps


